Skip to main content
Log in

The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These ‘polymineralic inclusions’ have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside → forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical and chemical evidence for an origin of kimberlite that involves the reaction of high-pressure dolomitic melt with diopside-bearing mantle assemblages producing a lower-pressure melt that crystallizes a calcite-dominated assemblage in the crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Araújo DP, Griffin WL, O’Reilly SY (2009) Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik, Slave Craton. Lithos 112:675–682. doi:10.1016/j.lithos.2009.06.005

    Article  Google Scholar 

  • Armstrong JP, Wilson M, Barnett RL et al (2004) Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 76:415–433. doi:10.1016/j.lithos.2004.03.025

    Article  Google Scholar 

  • Ayling B, Rose P, Petty S (2011) Using QEMSCAN to characterize fracture mineralization at the Newberry Volcano EGS Project, Oregon: a pilot study. GRC Trans 35:301–305

    Google Scholar 

  • Bleeker W, Ketchum J, Davis B, Sircombe K (2004) The Slave Craton from on top: the crustal view, pp 1–5. courses.eas.ualberta.ca

  • Boyd FR (1974) Olivine megacrysts from the kimberlites of Monastery and Frank Smith Mines, South Africa. Carnegie Inst Wash Yearb 73:282–285

    Google Scholar 

  • Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112:201–212. doi:10.1016/j.lithos.2009.04.030

    Article  Google Scholar 

  • Brett RC, Russell JK, Andrews GDM, Jones TJ (2015) The ascent of kimberlite: insights from olivine. Earth Planet Sci Lett 424:119–131. doi:10.1016/j.epsl.2015.05.024

    Article  Google Scholar 

  • Brey G, Brice WR, Ellis DJ et al (1983) Pyroxene–carbonate reactions in the upper mantle. Earth Planet Sci Lett 62:63–74. doi:10.1016/0012-821X(83)90071-7

    Article  Google Scholar 

  • Brey GP, Kogarko LN, Ryabchikov ID (1991) Carbon dioxide in kimberlitic melts. Neues Jahrb für Mineral Monatshefte 4:159–168

    Google Scholar 

  • Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821. doi:10.1093/petrology/egn002

    Article  Google Scholar 

  • Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220–223:238–252. doi:10.1016/j.lithos.2015.02.016

    Article  Google Scholar 

  • Canil D, Bellis AJ (2008) Phase equilibria in a volatile-free kimberlite at 0.1 MPa and the search for primary kimberlite magma. Lithos 105:111–117. doi:10.1016/j.lithos.2008.02.011

    Article  Google Scholar 

  • Canil D, Fedortchouk Y (1999) Garnet dissolution and the emplacement of kimberlites. Earth Planet Sci Lett 167:227–237. doi:10.1016/S0012-821X(99)00019-9

    Article  Google Scholar 

  • Carpenter RL, Edgar AD, Thibault Y (2002) Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, Germany. Mineral Petrol 74:149–162. doi:10.1007/s007100200002

    Article  Google Scholar 

  • Creaser RA, Grütter H, Carlson J, Crawford B (2004) Macrocrystal phlogopite Rb–Sr dates for the Ekati property kimberlites, Slave Province, Canada: evidence for multiple intrusive episodes in the Paleocene and Eocene. Lithos 76:399–414. doi:10.1016/j.lithos.2004.03.039

    Article  Google Scholar 

  • Creighton S, Stachel T, McLean H et al (2008) Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT. Contrib Mineral Petrol 155:541–554. doi:10.1007/s00410-007-0257-x

    Article  Google Scholar 

  • Creighton S, Stachel T, Eichenberg D, Luth RW (2010) Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib Mineral Petrol 159:645–657. doi:10.1007/s00410-009-0446-x

    Article  Google Scholar 

  • Dalton J, Presnall D (1998a) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135

    Article  Google Scholar 

  • Dalton JA, Presnall DC (1998b) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from at 6 GPa. J Petrol 39:1953–1964

    Google Scholar 

  • Davis W, Gariepy C, Van Breemen O (1996) Pb isotopic composition of late Archaean granites and the extent of recycling early Archaean crust in the Slave Province, northwest Canada. Chem Geol 130:255–269

    Article  Google Scholar 

  • Dawson JB (1971) Advances in kimberlite geology. Earth Sci Rev 7:187–214. doi:10.1016/0012-8252(71)90120-6

    Article  Google Scholar 

  • Dawson JB, Hawthorne JB (1973) Magmatic sedimentation and carbonatite differentiation in kimberlite sills at Benfontein, South Africa. J Geol Soc London 129:64–85

    Article  Google Scholar 

  • de Bruin D (2005) Multiple compositional megacryst groups from the Uintjiesberg and Witberg kimberlites, South Africa. S Afr J Geol 108:233–246. doi:10.2113/108.2.233

    Article  Google Scholar 

  • Donnelly CL, Stachel T, Creighton S et al (2007) Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest territories, Canada. Lithos 98:160–176. doi:10.1016/j.lithos.2007.03.003

    Article  Google Scholar 

  • Eccles DR, Heaman LM, Luth RW, Creaser RA (2004) Petrogenesis of the Late Cretaceous northern Alberta kimberlite province. Lithos 76:435–459. doi:10.1016/j.lithos.2004.03.046

    Article  Google Scholar 

  • Eggler DH (1989) Kimberlites: how do they form? In: Kimberlites and related rocks, vol 1. pp 489–504

  • Eggler DH, McCallum ME, Smith CB (1979) Megacryst assemblages in kimberlite from northern Colorado and southern Wyoming: petrology, geothermometry-barometry and areal distribution. Boyd Meyer 2:213–226

    Google Scholar 

  • Fedortchouk Y, Canil D (2004) Intensive Variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J Petrol 45:1725–1745. doi:10.1093/petrology/egh031

    Article  Google Scholar 

  • Foley SF, Yaxley GM, Rosenthal A et al (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112:274–283. doi:10.1016/j.lithos.2009.03.020

    Article  Google Scholar 

  • Giuliani A, Phillips D, Kamenetsky VS et al (2014) Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism. J Petrol 55:831–858. doi:10.1093/petrology/egu008

    Article  Google Scholar 

  • Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243:189–201. doi:10.1016/j.lithos.2015.11.013

    Article  Google Scholar 

  • Grütter HS (2009) Pyroxene xenocryst geotherms: techniques and application. Lithos 112:1167–1178. doi:10.1016/j.lithos.2009.03.023

    Article  Google Scholar 

  • Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. J Petrol 46:1645–1659. doi:10.1093/petrology/egi029

    Article  Google Scholar 

  • Haggerty SE, Boyd FR (1975) Kimberlite inclusions in an olivine megacryst from Monastery. In: Kimberlite symposium. Cambridge

  • Hayman PC, Cas RAF, Johnson M (2009) Characteristics and alteration origins of matrix minerals in volcaniclastic kimberlite of the Muskox pipe (Nunavut, Canada). Lithos 112:473–487. doi:10.1016/j.lithos.2009.06.025

    Article  Google Scholar 

  • Heaman LM, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of North American kimberlites. Lithos 76:377–397. doi:10.1016/j.lithos.2004.03.047

    Article  Google Scholar 

  • Hunter RH, Taylor LA (1984) Magma-mixing in the low velocity zone: kimberlitic megacrysts from Fayette County, Pennsylvania. Am Mineral 69:16–29

    Google Scholar 

  • Ionov D (1998) Trace element composition of mantle-derived carbonates and coexisting phasesin peridotite xenoliths from alkali basalts. J Petrol 39:1931–1941. doi:10.1093/petroj/39.11-12.1931

    Article  Google Scholar 

  • Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3–MgCO3 to 36 kb. Geochim Cosmochim Acta 39:35–53. doi:10.1016/0016-7037(75)90183-0

    Article  Google Scholar 

  • Isachsen C, Bowring S (1994) Evolution of the Slave craton. Geology 22:917–920

    Article  Google Scholar 

  • Kamenetsky VS (2016) Comment on: the ascent of kimberlite: insights from olivine” authored by Brett R.C. et al. [Earth Planet. Sci. Lett. 424 (2015) 119–131]. Earth Planet Sci Lett 440:187–189. doi:10.1016/j.epsl.2016.02.016

    Article  Google Scholar 

  • Kamenetsky VS, Yaxley GM (2015) Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim Cosmochim Acta 158:48–56. doi:10.1016/j.gca.2015.03.004

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Sobolev AV et al (2008) Olivine in the Udachnaya–East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839. doi:10.1093/petrology/egm033

    Article  Google Scholar 

  • Kamenetsky VS, Kamenetsky MB, Golovin AV et al (2012) Ultrafresh salty kimberlite of the Udachnaya–East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery? Lithos 152:173–186. doi:10.1016/j.lithos.2012.04.032

    Article  Google Scholar 

  • Kamenetsky VS, Grütter H, Kamenetsky MB, Gömann K (2013) Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem Geol 353:96–111. doi:10.1016/j.chemgeo.2012.09.022

    Article  Google Scholar 

  • Kjarsgaard BA, Pearson DG, Tappe S et al (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 112:236–248. doi:10.1016/j.lithos.2009.06.001

    Article  Google Scholar 

  • Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta 71:723–744. doi:10.1016/j.gca.2006.10.008

    Article  Google Scholar 

  • Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the jericho kimberlite: implications for the thermal state of the mantle beneath the Slave Craton, Northern Canada. J Petrol 40:79–104. doi:10.1093/petroj/40.1.79

    Article  Google Scholar 

  • Kopylova MG, Matveev S, Raudsepp M (2007) Searching for parental kimberlite melt. Geochim Cosmochim Acta 71:3616–3629. doi:10.1016/j.gca.2007.05.009

    Article  Google Scholar 

  • Kopylova MG, Mogg T, Smith BS (2010) Mineralogy of the Snap Lake kimberlite, Northwest Territories, Canada, and compositions of phlogopite as records of its crystallization. Can Mineral 48:549–570. doi:10.3749/canmin.48.3.549

    Article  Google Scholar 

  • Kusky T (1989) Accretion of the Archean Slave province. Geology 17:63–67

    Article  Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B et al (eds) (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge

    Google Scholar 

  • Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286. doi:10.1093/petrology/egg077

    Article  Google Scholar 

  • Lockhart G, Grütter H, Carlson J (2004) Temporal, geomagnetic and related attributes of kimberlite magmatism at Ekati, Northwest Territories, Canada. Lithos 77:665–682. doi:10.1016/j.lithos.2004.03.029

    Article  Google Scholar 

  • Lu J, Zheng JP, Griffin WL, O’Reilly SY (2015) Microscale effects of melt infiltration into the lithospheric mantle: peridotite xenoliths from Xilong, South China. Lithos 232:111–123. doi:10.1016/j.lithos.2015.06.013

    Article  Google Scholar 

  • Luth RW, Stachel T (2014) The buffering capacity of lithospheric mantle: implications for diamond formation. Contrib Mineral Petrol 168:1083. doi:10.1007/s00410-014-1083-6

    Article  Google Scholar 

  • Malarkey J, Pearson DG, Kjarsgaard BA et al (2010) From source to crust: tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry. Earth Planet Sci Lett 299:80–90. doi:10.1016/j.epsl.2010.08.020

    Article  Google Scholar 

  • McLean H, Banas A, Creighton S et al (2007) Garnet xenocrysts from the Diavik mine, NWT, Canada: composition, color, and paragenesis. Can Mineral 45:1131–1145. doi:10.2113/gscanmin.45.5.1131

    Article  Google Scholar 

  • Menzies A, Westerlund K, Grütter H et al (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton☆. Lithos 77:395–412. doi:10.1016/j.lithos.2004.04.013

    Article  Google Scholar 

  • Menzies A, Alvarez E, Belmar M, et al (2015) Quantification of trace REE-minerals using automated mineralogy. In: Chilean Geological Congress, La Serena, Chile

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York

    Book  Google Scholar 

  • Mitchell RH (1995) Kimberlites, Orangeites, and Related Rocks. Plenum Press, New York

    Book  Google Scholar 

  • Moss S, Russell JK, Andrews GDM (2008) Progressive infilling of a kimberlite pipe at Diavik, Northwest Territories, Canada: insights from volcanic facies architecture, textures, and granulometry. J Volcanol Geotherm Res 174:103–116. doi:10.1016/j.jvolgeores.2007.12.020

    Article  Google Scholar 

  • Nielsen T, Sand K (2008) The Majuagaa kimberlite dike, Maniitsoq region, West Greenland: constraints on an Mg-rich silicocarbonatitic melt composition from groundmass mineralogy and bulk. Can Mineral 46:1043–1061

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554. doi:10.1007/s004100000156

    Article  Google Scholar 

  • Nowicki T, Crawford B, Dyck D et al (2004) The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada. Lithos 76:1–27. doi:10.1016/j.lithos.2004.03.020

    Article  Google Scholar 

  • Padgham WA (1992) Mineral deposits in the Archean Slave Structural Province; lithological and tectonic setting. Precambrian Res 58:1–24

    Article  Google Scholar 

  • Paton C, Hellstrom J, Paul B et al (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518. doi:10.1039/c1ja10172b

    Article  Google Scholar 

  • Pilbeam LH, Nielsen TFD, Waight TE (2013) Digestion fractional crystallization (dfc): an important process in the genesis of kimberlites. Evidence from olivine in the Majuagaa Kimberlite, Southern West Greenland. J Petrol. doi:10.1093/petrology/egt016

  • Pivin M, Féménias O, Demaiffe D (2009) Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 112:951–960. doi:10.1016/j.lithos.2009.03.050

    Article  Google Scholar 

  • Price SE, Russell JK, Kopylova MG (2000) Primitive magma from the Jericho Pipe, NWT, Canada: constraints on primary kimberlite melt chemistry. J Petrol 41:789–808

    Article  Google Scholar 

  • Reguir EP, Chakhmouradian AR, Halden NM et al (2009) Major- and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos 112:372–384. doi:10.1016/j.lithos.2009.05.023

    Article  Google Scholar 

  • Roedder E (1984) Fluid Inclusions, Volume 12. Mineralogical Society of America

  • Roeder PL, Schulze DJ (2008) Crystallization of groundmass spinel in kimberlite. J Petrol 49:1473–1495. doi:10.1093/petrology/egn034

    Article  Google Scholar 

  • Russell JK, Porritt LA, Lavallée Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481:352–356. doi:10.1038/nature10740

    Article  Google Scholar 

  • Sarkar C, Heaman LM, Pearson DG (2015) Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology. Lithos 218–219:155–166. doi:10.1016/j.lithos.2015.01.017

    Article  Google Scholar 

  • Schulze D (1985) Evidence for primary kimberlitic liquids in megacrysts from kimberlites in Kentucky, USA. J Geol 93:75–79

    Article  Google Scholar 

  • Skinner E, Clement C (1979) Mineralogical classification of southern African kimberlites. In: Kimberlites, diatremes, and diamonds: their geology, petrology, and geochemistry, pp 129–139

  • Sokol AG, Kruk AN, Chebotarev DA, Palyanov YN (2016) Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle. Lithos 248–251:66–79. doi:10.1016/j.lithos.2016.01.013

    Article  Google Scholar 

  • Sparks RSJ, Brooker RA, Field M et al (2009) The nature of erupting kimberlite melts. Lithos 112:429–438. doi:10.1016/j.lithos.2009.05.032

    Article  Google Scholar 

  • Spetsius ZV, Taylor LA (2002) Partial melting in mantle eclogite xenoliths: connections with diamond paragenesis. Int Geol Rev 44:973–987. doi:10.2747/0020-6814.44.11.973

    Article  Google Scholar 

  • Stachel T, Harris JW, Tappert R, Brey GP (2003) Peridotitic diamonds from the Slave and the Kaapvaal cratons—similarities and differences based on a preliminary data set. Lithos 71:489–503. doi:10.1016/S0024-4937(03)00127-0

    Article  Google Scholar 

  • Stone RS (2016) The behavior of orthopyroxene in carbonatitic melts. University of Alberta

  • Stone RS, Luth RW (2016) Orthopyroxene assimilation in potential primary kimberlite melts

  • Su B-X, Zhang H-F, Deloule E et al (2012) Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chem Geol 292–293:149–157. doi:10.1016/j.chemgeo.2011.11.023

    Article  Google Scholar 

  • Tappe S, Graham Pearson D, Kjarsgaard BA et al (2013) Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd–Hf isotope systematics at Lac de Gras, Canada. Earth Planet Sci Lett 371–372:235–251. doi:10.1016/j.epsl.2013.03.039

    Article  Google Scholar 

  • Tappert R, Stachel T, Harris JW et al (2005) Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada. Eur J Mineral 17:423–440. doi:10.1127/0935-1221/2005/0017-0423

    Article  Google Scholar 

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part I : mineralogy, petrography, and whole rock chemistry. In: Taylor LA, Neal CR (eds) The University of Chicago. Group 97:551–567

  • van Achterbergh E, Griffin WL, Ryan CG et al (2002) Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30:743. doi:10.1130/0091-7613(2002)030<0743:SSFQCF>2.0.CO;2

    Article  Google Scholar 

  • van Achterbergh E, Griffin WL, Ryan CG et al (2004) Melt inclusions from the deep Slave lithosphere: implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos 76:461–474. doi:10.1016/j.lithos.2004.04.007

    Article  Google Scholar 

  • Weiss Y, McNeill J, Pearson DG et al (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524:339–342. doi:10.1038/nature14857

    Article  Google Scholar 

  • Wyllie PJ, Huang WL (1975) Peridotite, kimberlite, and carbonatite explained in the system CaO–MgO–SiO2–CO2. Geology 3(11):621–624

    Article  Google Scholar 

Download references

Acknowledgments

This study forms part of Y.B.’s Ph.D. research funded through D.G.P’s Canada Excellence Research Chair. Y.B. is grateful for a University of Alberta Doctoral Recruitment Scholarship. The staff at Diavik Diamond Mine, especially Yuri Kinakin and Gus Fomradas, are thanked for generously allowing access to drill core for sampling. Juanita Bellinger at Rio Tinto is thanked for providing additional concentrate samples. The authors wish to acknowledge the support of CISEM (Centro de Investigación y Servicios Mineralógicos), Universidad Católica del Norte, Antofagasta, Chile, for providing QEMSCAN® analytical time. At the University of Alberta, Sarah Gleeson is thanked for access to the fluid inclusion microscopy stage, Andrew Locock for assistance with EPMA, Yan Luo for assistance with LA-ICP-MS, and Chiranjeeb Sarkar for assistance with Sr column chemistry and TIMS. We are grateful to Vadim Kamenetsky for his constructive and insightful review and for kindly allowing us to use Fig. 2d. We also thank Dante Danil for a very helpful review and Tim Grove for the editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Bussweiler.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 72 kb)

Supplementary material 2 (XLSX 34 kb)

Supplementary material 3 (XLSX 22 kb)

Supplementary material 4 (XLSX 43 kb)

Supplementary material 5 (XLSX 26 kb)

Supplementary material 6 (XLSX 35 kb)

Supplementary material 7 (XLSX 19 kb)

Supplementary material 8 (XLSX 17 kb)

Supplementary Fig. 1

QEMSCAN® maps of polymineralic inclusions in Cr-diopside (a = PL_CPX_03 In01; b = PL_CPX_03 In10) and Cr-pyrope (c = PL_GRT_04 In13; d = PL_GRT_04 In05). Inclusions a) and c) are of the ‘carbonate-rich’, and b) and d) of the ‘silicate-rich’ end-member type. Modal proportions of the inclusions as obtained with QEMSCAN® are as follows: a) 10.3 % ol; 11.4 % srp; 11.2 % phl; 65.8 % cc; 0.1 % ap. b) 4.0 % ol; 60.4 % srp; 16.5 % phl; 15.2 % cc; 0.1 % ap. c) 8.2 % ol; 0.2 % cpx; 15.0 % srp; 30.2 % phl; 3.7 % spl; 40.7 % cc; 0.9 % dol; 0.1 % py. d) 0.8 % ol; 2.0 % cpx; 45.7 % srp; 31.1 % phl; 6.2 % spl; 0.1 % cc; 6.0 % dol; 0.1 % ap; 0.1 % py. Mineral abbreviations are as follows: ol = olivine; cpx = clinopyroxene; srp = serpentine; phl = phlogopite; spl = spinel; cc = calcite; dol = dolomite; ap = apatite; py = pyrite (JPEG 1925 kb)

Supplementary Fig. 2

Bivariate plots for major and minor elements in serpentine/chlorite in polymineralic inclusions resolved by megacryst host (Cr-diopside and Cr-pyrope) and in altered olivine mineral inclusions in Cr-pyrope. Reference data for kimberlitic serpentine are from Hayman et al. (2009) and Mitchell (1986) (JPEG 1150 kb)

Supplementary Fig. 3

ΔlogfO2 (FMQ) values for grt peridotites from different cratons (modified from Luth and Stachel 2014). Samples from the central Slave Craton (Creighton et al. 2010) are notably more oxidized than those from other cratons (JPEG 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bussweiler, Y., Stone, R.S., Pearson, D.G. et al. The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib Mineral Petrol 171, 65 (2016). https://doi.org/10.1007/s00410-016-1275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1275-3

Keywords