Abstract
Megacrystic (>1 cm) clinopyroxene (Cr-diopside) and garnet (Cr-pyrope) xenocrysts within kimberlites from Lac de Gras (Northwest Territories, Canada) contain fully crystallized melt inclusions. These ‘polymineralic inclusions’ have previously been interpreted to form by necking down of melts at mantle depths. We present a detailed petrographical and geochemical investigation of polymineralic inclusions and their host crystals to better understand how they form and what they reveal about the evolution of kimberlite melt. Genetically, the megacrysts are mantle xenocrysts with peridotitic chemical signatures indicating an origin within the lithospheric mantle (for the Cr-diopsides studied here ~4.6 GPa, 1015 °C). Textural evidence for disequilibrium between the host crystals and their polymineralic inclusions (spongy rims in Cr-diopside, kelyphite in Cr-pyrope) is consistent with measured Sr isotopic disequilibrium. The preservation of disequilibrium establishes a temporal link to kimberlite eruption. In Cr-diopsides, polymineralic inclusions contain phlogopite, olivine, chromite, serpentine, and calcite. Abundant fluid inclusion trails surround the inclusions. In Cr-pyropes, the inclusions additionally contain Al-spinel, clinopyroxene, and dolomite. The major and trace element compositions of the inclusion phases are generally consistent with the early stages of kimberlite differentiation trends. Extensive chemical exchange between the host phases and the inclusions is indicated by enrichment of the inclusions in major components of the host crystals, such as Cr2O3 and Al2O3. This chemical evidence, along with phase equilibria constraints, supports the proposal that the inclusions within Cr-diopside record the decarbonation reaction: dolomitic melt + diopside → forsterite + calcite + CO2, yielding the observed inclusion mineralogy and producing associated (CO2-rich) fluid inclusions. Our study of polymineralic inclusions in megacrysts provides clear mineralogical and chemical evidence for an origin of kimberlite that involves the reaction of high-pressure dolomitic melt with diopside-bearing mantle assemblages producing a lower-pressure melt that crystallizes a calcite-dominated assemblage in the crust.













Similar content being viewed by others
References
Araújo DP, Griffin WL, O’Reilly SY (2009) Mantle melts, metasomatism and diamond formation: insights from melt inclusions in xenoliths from Diavik, Slave Craton. Lithos 112:675–682. doi:10.1016/j.lithos.2009.06.005
Armstrong JP, Wilson M, Barnett RL et al (2004) Mineralogy of primary carbonate-bearing hypabyssal kimberlite, Lac de Gras, Slave Province, Northwest Territories, Canada. Lithos 76:415–433. doi:10.1016/j.lithos.2004.03.025
Ayling B, Rose P, Petty S (2011) Using QEMSCAN to characterize fracture mineralization at the Newberry Volcano EGS Project, Oregon: a pilot study. GRC Trans 35:301–305
Bleeker W, Ketchum J, Davis B, Sircombe K (2004) The Slave Craton from on top: the crustal view, pp 1–5. courses.eas.ualberta.ca
Boyd FR (1974) Olivine megacrysts from the kimberlites of Monastery and Frank Smith Mines, South Africa. Carnegie Inst Wash Yearb 73:282–285
Brett RC, Russell JK, Moss S (2009) Origin of olivine in kimberlite: phenocryst or impostor? Lithos 112:201–212. doi:10.1016/j.lithos.2009.04.030
Brett RC, Russell JK, Andrews GDM, Jones TJ (2015) The ascent of kimberlite: insights from olivine. Earth Planet Sci Lett 424:119–131. doi:10.1016/j.epsl.2015.05.024
Brey G, Brice WR, Ellis DJ et al (1983) Pyroxene–carbonate reactions in the upper mantle. Earth Planet Sci Lett 62:63–74. doi:10.1016/0012-821X(83)90071-7
Brey GP, Kogarko LN, Ryabchikov ID (1991) Carbon dioxide in kimberlitic melts. Neues Jahrb für Mineral Monatshefte 4:159–168
Brey GP, Bulatov VK, Girnis AV, Lahaye Y (2008) Experimental melting of carbonated peridotite at 6–10 GPa. J Petrol 49:797–821. doi:10.1093/petrology/egn002
Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada. Lithos 220–223:238–252. doi:10.1016/j.lithos.2015.02.016
Canil D, Bellis AJ (2008) Phase equilibria in a volatile-free kimberlite at 0.1 MPa and the search for primary kimberlite magma. Lithos 105:111–117. doi:10.1016/j.lithos.2008.02.011
Canil D, Fedortchouk Y (1999) Garnet dissolution and the emplacement of kimberlites. Earth Planet Sci Lett 167:227–237. doi:10.1016/S0012-821X(99)00019-9
Carpenter RL, Edgar AD, Thibault Y (2002) Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, Germany. Mineral Petrol 74:149–162. doi:10.1007/s007100200002
Creaser RA, Grütter H, Carlson J, Crawford B (2004) Macrocrystal phlogopite Rb–Sr dates for the Ekati property kimberlites, Slave Province, Canada: evidence for multiple intrusive episodes in the Paleocene and Eocene. Lithos 76:399–414. doi:10.1016/j.lithos.2004.03.039
Creighton S, Stachel T, McLean H et al (2008) Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT. Contrib Mineral Petrol 155:541–554. doi:10.1007/s00410-007-0257-x
Creighton S, Stachel T, Eichenberg D, Luth RW (2010) Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada. Contrib Mineral Petrol 159:645–657. doi:10.1007/s00410-009-0446-x
Dalton J, Presnall D (1998a) Carbonatitic melts along the solidus of model lherzolite in the system CaO–MgO–Al2O3–SiO2–CO2 from 3 to 7 GPa. Contrib Mineral Petrol 131:123–135
Dalton JA, Presnall DC (1998b) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from at 6 GPa. J Petrol 39:1953–1964
Davis W, Gariepy C, Van Breemen O (1996) Pb isotopic composition of late Archaean granites and the extent of recycling early Archaean crust in the Slave Province, northwest Canada. Chem Geol 130:255–269
Dawson JB (1971) Advances in kimberlite geology. Earth Sci Rev 7:187–214. doi:10.1016/0012-8252(71)90120-6
Dawson JB, Hawthorne JB (1973) Magmatic sedimentation and carbonatite differentiation in kimberlite sills at Benfontein, South Africa. J Geol Soc London 129:64–85
de Bruin D (2005) Multiple compositional megacryst groups from the Uintjiesberg and Witberg kimberlites, South Africa. S Afr J Geol 108:233–246. doi:10.2113/108.2.233
Donnelly CL, Stachel T, Creighton S et al (2007) Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest territories, Canada. Lithos 98:160–176. doi:10.1016/j.lithos.2007.03.003
Eccles DR, Heaman LM, Luth RW, Creaser RA (2004) Petrogenesis of the Late Cretaceous northern Alberta kimberlite province. Lithos 76:435–459. doi:10.1016/j.lithos.2004.03.046
Eggler DH (1989) Kimberlites: how do they form? In: Kimberlites and related rocks, vol 1. pp 489–504
Eggler DH, McCallum ME, Smith CB (1979) Megacryst assemblages in kimberlite from northern Colorado and southern Wyoming: petrology, geothermometry-barometry and areal distribution. Boyd Meyer 2:213–226
Fedortchouk Y, Canil D (2004) Intensive Variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J Petrol 45:1725–1745. doi:10.1093/petrology/egh031
Foley SF, Yaxley GM, Rosenthal A et al (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112:274–283. doi:10.1016/j.lithos.2009.03.020
Giuliani A, Phillips D, Kamenetsky VS et al (2014) Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism. J Petrol 55:831–858. doi:10.1093/petrology/egu008
Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243:189–201. doi:10.1016/j.lithos.2015.11.013
Grütter HS (2009) Pyroxene xenocryst geotherms: techniques and application. Lithos 112:1167–1178. doi:10.1016/j.lithos.2009.03.023
Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3-8 GPa. J Petrol 46:1645–1659. doi:10.1093/petrology/egi029
Haggerty SE, Boyd FR (1975) Kimberlite inclusions in an olivine megacryst from Monastery. In: Kimberlite symposium. Cambridge
Hayman PC, Cas RAF, Johnson M (2009) Characteristics and alteration origins of matrix minerals in volcaniclastic kimberlite of the Muskox pipe (Nunavut, Canada). Lithos 112:473–487. doi:10.1016/j.lithos.2009.06.025
Heaman LM, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of North American kimberlites. Lithos 76:377–397. doi:10.1016/j.lithos.2004.03.047
Hunter RH, Taylor LA (1984) Magma-mixing in the low velocity zone: kimberlitic megacrysts from Fayette County, Pennsylvania. Am Mineral 69:16–29
Ionov D (1998) Trace element composition of mantle-derived carbonates and coexisting phasesin peridotite xenoliths from alkali basalts. J Petrol 39:1931–1941. doi:10.1093/petroj/39.11-12.1931
Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3–MgCO3 to 36 kb. Geochim Cosmochim Acta 39:35–53. doi:10.1016/0016-7037(75)90183-0
Isachsen C, Bowring S (1994) Evolution of the Slave craton. Geology 22:917–920
Kamenetsky VS (2016) Comment on: the ascent of kimberlite: insights from olivine” authored by Brett R.C. et al. [Earth Planet. Sci. Lett. 424 (2015) 119–131]. Earth Planet Sci Lett 440:187–189. doi:10.1016/j.epsl.2016.02.016
Kamenetsky VS, Yaxley GM (2015) Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim Cosmochim Acta 158:48–56. doi:10.1016/j.gca.2015.03.004
Kamenetsky VS, Kamenetsky MB, Sobolev AV et al (2008) Olivine in the Udachnaya–East kimberlite (Yakutia, Russia): types, compositions and origins. J Petrol 49:823–839. doi:10.1093/petrology/egm033
Kamenetsky VS, Kamenetsky MB, Golovin AV et al (2012) Ultrafresh salty kimberlite of the Udachnaya–East pipe (Yakutia, Russia): a petrological oddity or fortuitous discovery? Lithos 152:173–186. doi:10.1016/j.lithos.2012.04.032
Kamenetsky VS, Grütter H, Kamenetsky MB, Gömann K (2013) Parental carbonatitic melt of the Koala kimberlite (Canada): constraints from melt inclusions in olivine and Cr-spinel, and groundmass carbonate. Chem Geol 353:96–111. doi:10.1016/j.chemgeo.2012.09.022
Kjarsgaard BA, Pearson DG, Tappe S et al (2009) Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 112:236–248. doi:10.1016/j.lithos.2009.06.001
Klein-BenDavid O, Izraeli ES, Hauri E, Navon O (2007) Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim Cosmochim Acta 71:723–744. doi:10.1016/j.gca.2006.10.008
Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the jericho kimberlite: implications for the thermal state of the mantle beneath the Slave Craton, Northern Canada. J Petrol 40:79–104. doi:10.1093/petroj/40.1.79
Kopylova MG, Matveev S, Raudsepp M (2007) Searching for parental kimberlite melt. Geochim Cosmochim Acta 71:3616–3629. doi:10.1016/j.gca.2007.05.009
Kopylova MG, Mogg T, Smith BS (2010) Mineralogy of the Snap Lake kimberlite, Northwest Territories, Canada, and compositions of phlogopite as records of its crystallization. Can Mineral 48:549–570. doi:10.3749/canmin.48.3.549
Kusky T (1989) Accretion of the Archean Slave province. Geology 17:63–67
Le Maitre RW, Streckeisen A, Zanettin B et al (eds) (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge
Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286. doi:10.1093/petrology/egg077
Lockhart G, Grütter H, Carlson J (2004) Temporal, geomagnetic and related attributes of kimberlite magmatism at Ekati, Northwest Territories, Canada. Lithos 77:665–682. doi:10.1016/j.lithos.2004.03.029
Lu J, Zheng JP, Griffin WL, O’Reilly SY (2015) Microscale effects of melt infiltration into the lithospheric mantle: peridotite xenoliths from Xilong, South China. Lithos 232:111–123. doi:10.1016/j.lithos.2015.06.013
Luth RW, Stachel T (2014) The buffering capacity of lithospheric mantle: implications for diamond formation. Contrib Mineral Petrol 168:1083. doi:10.1007/s00410-014-1083-6
Malarkey J, Pearson DG, Kjarsgaard BA et al (2010) From source to crust: tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry. Earth Planet Sci Lett 299:80–90. doi:10.1016/j.epsl.2010.08.020
McLean H, Banas A, Creighton S et al (2007) Garnet xenocrysts from the Diavik mine, NWT, Canada: composition, color, and paragenesis. Can Mineral 45:1131–1145. doi:10.2113/gscanmin.45.5.1131
Menzies A, Westerlund K, Grütter H et al (2004) Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton☆. Lithos 77:395–412. doi:10.1016/j.lithos.2004.04.013
Menzies A, Alvarez E, Belmar M, et al (2015) Quantification of trace REE-minerals using automated mineralogy. In: Chilean Geological Congress, La Serena, Chile
Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York
Mitchell RH (1995) Kimberlites, Orangeites, and Related Rocks. Plenum Press, New York
Moss S, Russell JK, Andrews GDM (2008) Progressive infilling of a kimberlite pipe at Diavik, Northwest Territories, Canada: insights from volcanic facies architecture, textures, and granulometry. J Volcanol Geotherm Res 174:103–116. doi:10.1016/j.jvolgeores.2007.12.020
Nielsen T, Sand K (2008) The Majuagaa kimberlite dike, Maniitsoq region, West Greenland: constraints on an Mg-rich silicocarbonatitic melt composition from groundmass mineralogy and bulk. Can Mineral 46:1043–1061
Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554. doi:10.1007/s004100000156
Nowicki T, Crawford B, Dyck D et al (2004) The geology of kimberlite pipes of the Ekati property, Northwest Territories, Canada. Lithos 76:1–27. doi:10.1016/j.lithos.2004.03.020
Padgham WA (1992) Mineral deposits in the Archean Slave Structural Province; lithological and tectonic setting. Precambrian Res 58:1–24
Paton C, Hellstrom J, Paul B et al (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom 26:2508–2518. doi:10.1039/c1ja10172b
Pilbeam LH, Nielsen TFD, Waight TE (2013) Digestion fractional crystallization (dfc): an important process in the genesis of kimberlites. Evidence from olivine in the Majuagaa Kimberlite, Southern West Greenland. J Petrol. doi:10.1093/petrology/egt016
Pivin M, Féménias O, Demaiffe D (2009) Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 112:951–960. doi:10.1016/j.lithos.2009.03.050
Price SE, Russell JK, Kopylova MG (2000) Primitive magma from the Jericho Pipe, NWT, Canada: constraints on primary kimberlite melt chemistry. J Petrol 41:789–808
Reguir EP, Chakhmouradian AR, Halden NM et al (2009) Major- and trace-element compositional variation of phlogopite from kimberlites and carbonatites as a petrogenetic indicator. Lithos 112:372–384. doi:10.1016/j.lithos.2009.05.023
Roedder E (1984) Fluid Inclusions, Volume 12. Mineralogical Society of America
Roeder PL, Schulze DJ (2008) Crystallization of groundmass spinel in kimberlite. J Petrol 49:1473–1495. doi:10.1093/petrology/egn034
Russell JK, Porritt LA, Lavallée Y, Dingwell DB (2012) Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481:352–356. doi:10.1038/nature10740
Sarkar C, Heaman LM, Pearson DG (2015) Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendations for kimberlite geochronology. Lithos 218–219:155–166. doi:10.1016/j.lithos.2015.01.017
Schulze D (1985) Evidence for primary kimberlitic liquids in megacrysts from kimberlites in Kentucky, USA. J Geol 93:75–79
Skinner E, Clement C (1979) Mineralogical classification of southern African kimberlites. In: Kimberlites, diatremes, and diamonds: their geology, petrology, and geochemistry, pp 129–139
Sokol AG, Kruk AN, Chebotarev DA, Palyanov YN (2016) Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle. Lithos 248–251:66–79. doi:10.1016/j.lithos.2016.01.013
Sparks RSJ, Brooker RA, Field M et al (2009) The nature of erupting kimberlite melts. Lithos 112:429–438. doi:10.1016/j.lithos.2009.05.032
Spetsius ZV, Taylor LA (2002) Partial melting in mantle eclogite xenoliths: connections with diamond paragenesis. Int Geol Rev 44:973–987. doi:10.2747/0020-6814.44.11.973
Stachel T, Harris JW, Tappert R, Brey GP (2003) Peridotitic diamonds from the Slave and the Kaapvaal cratons—similarities and differences based on a preliminary data set. Lithos 71:489–503. doi:10.1016/S0024-4937(03)00127-0
Stone RS (2016) The behavior of orthopyroxene in carbonatitic melts. University of Alberta
Stone RS, Luth RW (2016) Orthopyroxene assimilation in potential primary kimberlite melts
Su B-X, Zhang H-F, Deloule E et al (2012) Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chem Geol 292–293:149–157. doi:10.1016/j.chemgeo.2011.11.023
Tappe S, Graham Pearson D, Kjarsgaard BA et al (2013) Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd–Hf isotope systematics at Lac de Gras, Canada. Earth Planet Sci Lett 371–372:235–251. doi:10.1016/j.epsl.2013.03.039
Tappert R, Stachel T, Harris JW et al (2005) Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada. Eur J Mineral 17:423–440. doi:10.1127/0935-1221/2005/0017-0423
Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part I : mineralogy, petrography, and whole rock chemistry. In: Taylor LA, Neal CR (eds) The University of Chicago. Group 97:551–567
van Achterbergh E, Griffin WL, Ryan CG et al (2002) Subduction signature for quenched carbonatites from the deep lithosphere. Geology 30:743. doi:10.1130/0091-7613(2002)030<0743:SSFQCF>2.0.CO;2
van Achterbergh E, Griffin WL, Ryan CG et al (2004) Melt inclusions from the deep Slave lithosphere: implications for the origin and evolution of mantle-derived carbonatite and kimberlite. Lithos 76:461–474. doi:10.1016/j.lithos.2004.04.007
Weiss Y, McNeill J, Pearson DG et al (2015) Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524:339–342. doi:10.1038/nature14857
Wyllie PJ, Huang WL (1975) Peridotite, kimberlite, and carbonatite explained in the system CaO–MgO–SiO2–CO2. Geology 3(11):621–624
Acknowledgments
This study forms part of Y.B.’s Ph.D. research funded through D.G.P’s Canada Excellence Research Chair. Y.B. is grateful for a University of Alberta Doctoral Recruitment Scholarship. The staff at Diavik Diamond Mine, especially Yuri Kinakin and Gus Fomradas, are thanked for generously allowing access to drill core for sampling. Juanita Bellinger at Rio Tinto is thanked for providing additional concentrate samples. The authors wish to acknowledge the support of CISEM (Centro de Investigación y Servicios Mineralógicos), Universidad Católica del Norte, Antofagasta, Chile, for providing QEMSCAN® analytical time. At the University of Alberta, Sarah Gleeson is thanked for access to the fluid inclusion microscopy stage, Andrew Locock for assistance with EPMA, Yan Luo for assistance with LA-ICP-MS, and Chiranjeeb Sarkar for assistance with Sr column chemistry and TIMS. We are grateful to Vadim Kamenetsky for his constructive and insightful review and for kindly allowing us to use Fig. 2d. We also thank Dante Danil for a very helpful review and Tim Grove for the editorial handling.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Timothy L. Grove.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary Fig. 1
QEMSCAN® maps of polymineralic inclusions in Cr-diopside (a = PL_CPX_03 In01; b = PL_CPX_03 In10) and Cr-pyrope (c = PL_GRT_04 In13; d = PL_GRT_04 In05). Inclusions a) and c) are of the ‘carbonate-rich’, and b) and d) of the ‘silicate-rich’ end-member type. Modal proportions of the inclusions as obtained with QEMSCAN® are as follows: a) 10.3 % ol; 11.4 % srp; 11.2 % phl; 65.8 % cc; 0.1 % ap. b) 4.0 % ol; 60.4 % srp; 16.5 % phl; 15.2 % cc; 0.1 % ap. c) 8.2 % ol; 0.2 % cpx; 15.0 % srp; 30.2 % phl; 3.7 % spl; 40.7 % cc; 0.9 % dol; 0.1 % py. d) 0.8 % ol; 2.0 % cpx; 45.7 % srp; 31.1 % phl; 6.2 % spl; 0.1 % cc; 6.0 % dol; 0.1 % ap; 0.1 % py. Mineral abbreviations are as follows: ol = olivine; cpx = clinopyroxene; srp = serpentine; phl = phlogopite; spl = spinel; cc = calcite; dol = dolomite; ap = apatite; py = pyrite (JPEG 1925 kb)
Supplementary Fig. 2
Bivariate plots for major and minor elements in serpentine/chlorite in polymineralic inclusions resolved by megacryst host (Cr-diopside and Cr-pyrope) and in altered olivine mineral inclusions in Cr-pyrope. Reference data for kimberlitic serpentine are from Hayman et al. (2009) and Mitchell (1986) (JPEG 1150 kb)
Rights and permissions
About this article
Cite this article
Bussweiler, Y., Stone, R.S., Pearson, D.G. et al. The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib Mineral Petrol 171, 65 (2016). https://doi.org/10.1007/s00410-016-1275-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00410-016-1275-3