Skip to main content

Advertisement

Log in

Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

This study focuses on the production of convergent margin calc-alkaline andesites by crystallization–differentiation of basaltic magmas in the lower to middle crust. Previous experimental studies show that dry, reduced, subalkaline basalts differentiate to tholeiitic (high Fe/Mg) daughter liquids, but the influences of H2O and oxidation on differentiation are less well established. Accordingly, we performed crystallization experiments at controlled oxidized fO2 (Re–ReO2 ≈ ΔNi–NiO + 2) on a relatively magnesian basalt (8.7 wt% MgO) typical of mafic magmas erupted in the Cascades near Mount Rainier, Washington. The basalt was synthesized with 2 wt% H2O and run at 900, 700, and 400 MPa and 1,200 to 950 °C. A broadly clinopyroxenitic crystallization interval dominates near the liquidus at 900 and 700 MPa, consisting of augite + olivine + orthopyroxene + Cr-spinel (in decreasing abundance). With decreasing temperature, plagioclase crystallizes, Fe–Ti-oxide replaces spinel, olivine dissolves, and finally amphibole appears, producing gabbroic and then amphibole gabbroic crystallization stages. Enhanced plagioclase stability at lower pressure narrows the clinopyroxenitic interval and brings the gabbroic interval toward the liquidus. Liquids at 900 MPa track along Miyashiro’s (Am J Sci 274(4):321–355, 1974) tholeiitic versus calc-alkaline boundary, whereas those at 700 and 400 MPa become calc-alkaline at silica contents ≥56 wt%. This difference is chiefly due to higher temperature appearance of magnetite (versus spinel) at lower pressures. Although the evolved liquids are similar in many respects to common calc-alkaline andesites, the 900 and 700 MPa liquids differ in having low CaO concentrations due to early and abundant crystallization of augite, with the result that those liquids become peraluminous (ASI: molar Al/(Na + K + 2Ca) > 1) at ≥61 wt% SiO2, similar to liquids reported in other studies of the high-pressure crystallization of hydrous basalts (Müntener and Ulmer in Geophys Res Lett 33(21):L21308, 2006). The lower-pressure liquids (400 MPa) have this same trait, but to a lesser extent due to more abundant near-liquidus plagioclase crystallization. A compilation of >6,500 analyses of igneous rocks from the Cascades and the Sierra Nevada batholith, representative of convergent margin (arc) magmas, shows that ASI increases continuously and linearly with SiO2 from basalts to rhyolites or granites and that arc magmas are not commonly peraluminous until SiO2 exceeds 69 wt%. These relations are consistent with plagioclase accompanying mafic silicates over nearly all the range of crystallization (or remelting). The scarcity of natural peraluminous andesites shows that progressive crystallization–differentiation of primitive basalts in the deep crust, producing early clinopyroxenitic cumulates and evolved liquids, does not dominate the creation of intermediate arc magmas or of the continental crust. Instead, mid- to upper-crustal differentiation and/or open-system processes are critical to the production of intermediate arc magmas. Primary among the open-system processes may be extraction of highly evolved (granitic, rhyolitic) liquids at advanced degrees of basalt solidification (or incipient partial melting of predecessor gabbroic intrusions) and mixing of such liquids into replenishing basalts. Furthermore, if the andesitic-composition continents derived from basaltic sources, the arc ASI–SiO2 relation shows that the mafic component returned to the mantle was gabbroic in composition, not pyroxenitic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonzo-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541–558. doi:10.1007/s00410-008-0351-8

    Article  Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83(9–10):1127–1132

    Google Scholar 

  • Bacon CR, Bruggman PE, Christiansen RL, Clynne MA, Donnelly-Nolan JM, Hildreth W (1997) Primitive magmas at five Cascade volcanic fields; melts from hot, heterogeneous sub-arc mantle. Can Mineral 35(2):397–423

    Google Scholar 

  • Baker MB, Grove TL, Price R (1994) Primitive basalts and andesites from the Mt. Shasta region, N. California: products of varying melt fraction and water content. Contrib Mineral Petrol 118:111–129. doi:10.1007/BF01052863

    Article  Google Scholar 

  • Balta JB, Beckett JR, Asimow PD (2011) Thermodynamic properties of alloys of gold-74/palladium-26 with variable amounts of iron and the use of Au–Pd–Fe alloys as containers for experimental petrology. Am Mineral 96(10):1467–1474. doi:10.2138/am.2011.3637

    Article  Google Scholar 

  • Bartels K, Kinzler R, Grove T (1991) High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib Mineral Petrol 108(3):253–270. doi:10.1007/bf00285935

    Article  Google Scholar 

  • Blatter DL, Carmichael ISE (2001) Hydrous phase equilibria of a Mexican high-silica andesite: a candidate for a mantle origin? Geochim Cosmochim Acta 65(21):4043–4065. doi:10.1016/s0016-7037(01)00708-6

    Article  Google Scholar 

  • Bohlen SR, Boettcher AL (1982) The quartz-coesite transformation: a precise determination and the effects of other components. J Geophys Res 87(B8):7073–7078. doi:10.1029/JB087iB08p07073

    Article  Google Scholar 

  • Botcharnikov RE, Almeev RR, Koepke J, Holtz F (2008) Phase relations and liquid lines of descent in hydrous ferrobasalt—implications for the skaergaard intrusion and Columbia River flood basalts. J Petrol 49(9):1687–1727. doi:10.1093/petrology/egn043

    Article  Google Scholar 

  • Bowen NL (1928) The evolution of igneous rocks. Princeton University Press, New Jersey

    Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750°C. J Geophys Res 65(2):741–748. doi:10.1029/JZ065i002p00741

    Article  Google Scholar 

  • Carmichael ISE (1991) The redox states of basic and silicic magmas: a reflection of their source regions? Contrib Mineral Petrol 106(2):129–141. doi:10.1007/bf00306429

    Article  Google Scholar 

  • Chou IM (1978) Calibration of oxygen buffers at elevated P and T using the hydrogen fugacity sensor. Am Mineral 63:690–703

    Google Scholar 

  • DePaolo DJ (1980) Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim Cosmochim Acta 44(8):1185–1196. doi:10.1016/0016-7037(80)90072-1

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53(2):189–202. doi:10.1016/0012-821x(81)90153-9

    Article  Google Scholar 

  • Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am Mineral 80:1339–1342

    Google Scholar 

  • Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36(6):1607–1631

    Google Scholar 

  • Dodge FCW, Papike JJ, Mays RE (1968) Hornblendes from granitic rocks of the central Sierra Nevada Batholith, California. J Petrol 9(3):378–410. doi:10.1093/petrology/9.3.378

    Article  Google Scholar 

  • Draper DS, Johnston AD (1992) Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib Mineral Petrol 112(4):501–519. doi:10.1007/bf00310781

    Article  Google Scholar 

  • Eugster HP (1957) Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. J Chem Phys 26(6):1760. doi:10.1063/1.1743626

    Article  Google Scholar 

  • Faure F, Schiano P (2005) Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236:882–898. doi:10.1016/j.epsl.2005.04.050

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119(2):197–212. doi:10.1007/bf00307281

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer-Verlag, New York

    Book  Google Scholar 

  • Grove TL, Juster TC (1989) Experimental investigations of low-Ca pyroxene stability and olivine-pyroxene-liquid equilibria at 1-atm in natural basaltic and andesitic liquids. Contrib Mineral Petrol 103:287–305

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533. doi:10.1007/s00410-003-0448-z

    Article  Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Médard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Article  Google Scholar 

  • Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw-Hill, New York

    Google Scholar 

  • Hirose K (1997) Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology 25:42–44

    Article  Google Scholar 

  • Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473

    Article  Google Scholar 

  • Jull M, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res 106(B4):6423–6446. doi:10.1029/2000JB900357

    Article  Google Scholar 

  • Juster TC, Grove TL, Perfit MR (1989) Experimental constraints on the generation of FeTi basalts, andesites and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W. J Geophys Res 94:9251–9274

    Article  Google Scholar 

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific Ocean crust. J Volcanol Geotherm Res 4(1–2):117–132. doi:10.1016/0377-0273(78)90032-x

    Article  Google Scholar 

  • Kelemen P (1986) Assimilation of ultramafic rock in subduction-related magmatic arcs. J Geol 94(6):829–843

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607. doi:10.1126/science.1174156

    Article  Google Scholar 

  • Kushiro I (1974) Melting of hydrous upper mantle and possible generation of andesitic magma: an approach from synthetic systems. Earth Planet Sci Lett 22(4):294–299. doi:10.1016/0012-821x(74)90138-1

    Article  Google Scholar 

  • Lee C-TA, Leeman WP, Canil D, Li Z-XA (2005) Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions. J Petrol 46(11):2313–2336. doi:10.1093/petrology/egi056

    Article  Google Scholar 

  • Lowenstern JB, Pitcher BW (2013) Analysis of H2O in silicate glass using attenuated total reflectance (ATR) micro-FTIR spectroscopy. Amer Mineral (in press)

  • MacPherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3–4):581–593. doi:10.1016/j.epsl.2005.12.034

    Article  Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79(1–2):1–24. doi:10.1016/j.lithos.2004.04.048

    Article  Google Scholar 

  • Mercer CN, Johnston AD (2008) Experimental studies of the P-T-H2O near-liquidus phase relations of basaltic andesite from north sister volcano, high Oregon Cascades: constraints on lower-crustal mineral assemblages. Contrib Mineral Petrol 155:571–592. doi:10.1007/s00410-007-0259-8

    Article  Google Scholar 

  • Métrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev Mineral Geochem 69(1):363–402. doi:10.2138/rmg.2008.69.10

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274(4):321–355. doi:10.2475/ajs.274.4.321

    Article  Google Scholar 

  • Morgan GBV, London D (1996) Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Mineral 81(9–10):1176–1185

    Google Scholar 

  • Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett 33(21):L21308. doi:10.1029/2006gl027629

    Article  Google Scholar 

  • Müntener O, Kelemen P, Grove T (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141(6):643–658. doi:10.1007/s004100100266

    Article  Google Scholar 

  • Ochs FA, Lange RA (1999) The density of hydrous magmatic liquids. Science 283(5406):1314–1317. doi:10.1126/science.283.5406.1314

    Article  Google Scholar 

  • Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257:609–647

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O–CO2 fluids in silicate melts. Chem Geol 229(1–3):78–95. doi:10.1016/j.chemgeo.2006.01.013

    Article  Google Scholar 

  • Pownceby MI, O’Neill HSC (1994) Thermodynamic data from redox reactions at high temperatures. IV. Calibration of the Re–ReO2; oxygen buffer from EMF and NiO + Ni–Pd redox sensor measurements. Contrib Mineral Petrol 118(2):130–137. doi:10.1007/bf01052864

    Article  Google Scholar 

  • Ringwood AE (1974) The petrological evolution of island arc systems. J Geol Soc 130(3):183–204. doi:10.1144/gsjgs.130.3.0183

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL, Holland HD, Turekian KK (eds) The crust: treatise on geochemistry, vol 3. Elsevier-Pergamon, Oxford, pp 1–64

    Chapter  Google Scholar 

  • Ruscitto DM, Wallace PJ, Johnson ER, Kent AJR, Bindeman IN (2010) Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: implications for magma formation and mantle conditions in a hot arc. Earth Planet Sci Lett 298(1–2):153–161. doi:10.1016/j.epsl.2010.07.037

    Article  Google Scholar 

  • Sakuyama M (1981) Petrological Study of the Myoko and Kurohime volcanoes, Japan: crystallization sequence and evidence for magma mixing. J Petrol 22(4):553–583. doi:10.1093/petrology/22.4.553

    Article  Google Scholar 

  • Shaw S, DeBari SM, Wallace PJ, Sisson TW, Rowe M (2011) Volatile contents in olivine-hosted melt inclusions from primitive magmas in the northern Cascade arc. In: American Geophysical Union, Fall Meeting, vol Abstract #V41D-2526

  • Sisson TW, Grove TL (1993a) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166. doi:10.1007/bf00283225

    Article  Google Scholar 

  • Sisson TW, Grove TL (1993b) Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol 113(2):167–184. doi:10.1007/bf00283226

    Article  Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117(3–4):619–635. doi:10.1016/0012-821x(93)90107-k

    Article  Google Scholar 

  • Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148(6):635–661. doi:10.1007/s00410-004-0632-9

    Article  Google Scholar 

  • Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean austral volcanic zone. Contrib Mineral Petrol 123(3):263–281. doi:10.1007/s004100050155

    Article  Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121(3–4):293–325. doi:10.1016/0012-821x(94)90074-4

    Article  Google Scholar 

  • Stormer JC Jr, Nicholls J (1978) XLFRAC: a program for the interactive testing of magmatic differentiation models. Comput Geosci 4(2):143–159. doi:10.1016/0098-3004(78)90083-3

    Article  Google Scholar 

  • Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophys Geosyst 9(3):Q03007. doi:10.1029/2007gc001583

    Article  Google Scholar 

  • Straub SM, Gomez-Tuena A, Stuart FM, Zellmenr GF, Espinasa-Perena R, Cai Y, Iizuka Y (2011) Formation of hybrid arc andesites beneath thick continental crust. Earth Planet Sci Lett 303:337–347. doi:10.1016/j.epsl.2011.01.013

    Article  Google Scholar 

  • Tatsumi Y (2005) The subduction factory: how it operates in the evolving Earth. GSA Today 15:4–10

    Article  Google Scholar 

  • Tatsumi Y, Suzuki T (2009) Tholeiitic versus calc-alkalic differentiation and evolution of arc crust: constraints from melting experiments on a basalt from the Izu–Bonin–Mariana arc. J Petrol 50(8):1575–1603. doi:10.1093/petrology/egp044

    Article  Google Scholar 

  • Thorpe RS (1982) Andesites: orogenic andesites and related rocks. Wiley, Chichester

    Google Scholar 

  • Till CB, Grove TL, Krawczynski MJ (2012) A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields. J Geophys Res 117:B06206. doi:10.1029/2011JB009044

    Article  Google Scholar 

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149(1):22–39. doi:10.1007/s00410-004-0629-4

    Article  Google Scholar 

  • Wagner TP, Donnelly-Nolan JM, Grove TL (1995) Petrogenesis of low-MgO, high Al2O3 basalt and basaltic andesite: the roles of hydrous differentiation and crystal accumulation. Contrib Mineral Petrol 121:201–216

    Article  Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240. doi:10.1016/j.jvolgeores.2004.07.023

    Article  Google Scholar 

  • Weaver SL, Wallace PJ, Johnston AD (2011) A comparative study of continental versus intraoceanic arc mantle melting: experimentally determined phase relations of hydrous primitive melts. Earth Planet Sci Lett 308:97–106. doi:10.1016/j.epsl.2011.05.040

    Article  Google Scholar 

  • Wood BJ, Fraser DG (1976) Elementary thermodynamics for geologists. Oxford University Press, Oxford

    Google Scholar 

  • Wysolcazanski R, Tani K (2006) Spectographic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: an example form the Izu–Bonin arc. J Volcanol Geotherm Res 156:302–314. doi:10.1016/j.jvolgeores.2006.03.024

    Article  Google Scholar 

  • Yoder HS (1976) Generation of basaltic magma. National Academy of Science, Washington, DC

    Google Scholar 

  • Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Stelling P, Larsen J, Singer B, Jicha B, Mandeville C, Nye CJ (2010) The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J Petrol 51(12):2411–2444. doi:10.1093/petrology/egq062

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Jim Brophy, Christy Till, and an anonymous reviewer for insightful comments that helped improve this manuscript. Additional comments and editorial handling by Gordon Moore are also appreciated. Conversations with Peter Ulmer and Othmar Müntener, while looking at rocks in the Sierra Nevada, helped stimulate this project. Robert Oscarson and Leslie Hayden provided assistance with probe analyses at the USGS Electron Microprobe Facility in Menlo Park, CA. Jake Lowenstern provided guidance with the FTIR analyses and provided the calibration equations for ATR-FTIR analyses prior to publication. Joel Robinson provided help with the density contour plot. This research was supported by the USGS Volcano Hazards Program. The first author would also like to acknowledge the generous mentorship and friendship of the late Ian Carmichael, to whom this volume is dedicated. Not a day goes by without the thought: “What would Ian say about this?” as a litmus test to any method, idea, or decision. Thank you Ian!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawnika L. Blatter.

Additional information

Communicated by G. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blatter, D.L., Sisson, T.W. & Hankins, W.B. Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis. Contrib Mineral Petrol 166, 861–886 (2013). https://doi.org/10.1007/s00410-013-0920-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0920-3

Keywords

Navigation