Skip to main content

Advertisement

Log in

Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

An Erratum to this article was published on 23 November 2014

Abstract

Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Armstrong JT (1995) CITZAF—a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Asimow PD, Hirschmann MM, Ghiorso MS, Ohara MJ, Stolper EM (1995) The effect of pressure-induced solid–solid phase-transitions on decompression melting of the mantle. Geochim Cosmochim Acta 59(21):4489–4506

    Article  Google Scholar 

  • Asimow PD, Hirschmann MM, Stolper E (1997) An analysis of variations in isentropic melt productivity. Philos Trans R Soc Lond Ser A 355:255–281

    Article  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58(13):2811–2827

    Article  Google Scholar 

  • Barr JA, Grove TL (2013) Experimental petrology of the Apollo 15 group A green glasses: melting primordial lunar mantle and magma ocean cumulate assimilation. Geochim Cosmochim Acta. doi:10.1016/j.gca.2012.12.035

  • Boyd FR, England JL (1960) Apparatus for phase equilibrium studies at pressures up to 50 kilobars and temperatures up to 1750 °C. J Geophys Res 65:741–748

    Article  Google Scholar 

  • Brey G, Green DH (1975) Role of CO2 in genesis of olivine melilite. Contrib Mineral Petrol 49(2):93–103. doi:10.1007/bf00373853

    Article  Google Scholar 

  • Clague DA (1987) Hawaiian alkaline volcanism. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geol Soc Spec Pub 30:227–252

  • Clague DA, Moore JG, Dixon JE, Freisen WB (1995) Petrology of submarine lavas from Kilauea’s Puna Ridge, Hawaii. J Petrol 36(2):299–349

    Article  Google Scholar 

  • Clague DA, Davis AL, Bischoff JL, Dixon JE, Geyer R (2000) Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Loihi seamount and Kilauea volcano. Bull Volcanol 61:437–449

    Article  Google Scholar 

  • Coombs ML, Sisson TW, Lipman PL (2004) Major element, sulfur, and chlorine concentrations of glasses from the submarine flank of Kilauea volcano, Hawaii, collected during the 1998–2002 Japan Marine Science and Technology Center (JAMSTEC) cruises. U.S. Geological Survey Open File Report: OF 2004–1378, p 7. http://pubs.usgs.gov/of/2004/1378

  • Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662. doi:10.1038/nature04612

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2007) Effect of variable carbonate concentration on the solidus of mantle peridotite. Am Mineral 92:370–379

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48(11):2093–2124. doi:10.1093/petrology/egm053

    Article  Google Scholar 

  • Ding L, Kapp P, Zhong DL, Deng WM (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44(10):1833–1865

    Article  Google Scholar 

  • Eggins SM (1992) Petrogenesis of Hawaiian tholeiites: 2. Aspects of dynamic melt segregation. Contrib Mineral Petrol 110:398–410

    Article  Google Scholar 

  • Eggler DH (1978) Effect of CO2 upon partial melting of peridotite in system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35 kb, with an analysis of melting in a peridotite-H2O–CO2 system. Am J Sci 278(3):305–343

    Article  Google Scholar 

  • Frey FA, Wise WS, Garcia MO, West H, Kwon ST, Kennedy A (1990) Evolution of Mauna Kea Volcano, Hawaii: petrologic and geochemical constraints on postshield volcanism. J Geophys Res 95:1271–1300

    Article  Google Scholar 

  • Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131(4):323–346

    Article  Google Scholar 

  • Garcia MO, Muenow DW, Aggrey KE, O'Neill JR (1989) Major element, volatile, and stable isotope geochemistry of Hawaiian submarine tholeiitic glasses. J Geophys Res 94(B8):10525–10538

    Article  Google Scholar 

  • Garcia MO, Foss DJO, West HB, Mahoney JJ (1995) Geochemical and isotopic evolution of Loihi volcano, Hawaii. J Petrol 36:1647–1674

    Google Scholar 

  • Grove TL, Bence AE (1977) Experimental study of pyroxene-liquid interaction in quartz-normative basalt 15597. Proc Lunar Sci Conf 8:1549–1579

    Google Scholar 

  • Gudfinnsson GH, Presnall DC (1996) Melting relations of model lherzolite in the system CaO–MgO–Al2O3–SiO2 at 2.4-3.4 GPa and the generation of komatiites. J Geophys Res 101(B12):27701–27709. doi:10.1029/96jb02462

    Google Scholar 

  • Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46(7):1645–1659

    Article  Google Scholar 

  • Guo ZF, Wilson M, Liu JQ, Mao Q (2006) Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol 47(6):1177–1220

    Article  Google Scholar 

  • Hart SR, Zindler A (1986) In search of a bulk-earth composition. Chem Geol 57(3–4):247–267

    Article  Google Scholar 

  • Hays JF (1967) Lime-alumina-silica. In: Carnegie Institution of Washington Year Book, vol 65. Carnegie Institution of Washington, Washington, DC, pp 234–239

  • Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELTS2.XLS software program for primary magma calculation. Geochem Geophys Geosyst 9:art. no.-Q09001

  • Hesse M, Grove TL (2003) Absarokites from the western Mexican Volcanic Belt: constraints on mantle wedge conditions. Contrib Mineral Petrol 146:10–27

    Article  Google Scholar 

  • Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res L 24(22):2837–2840. doi:10.1029/97gl02956

    Article  Google Scholar 

  • Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31(6):481–484

    Article  Google Scholar 

  • Hofmann AW, Feigenson MD, Raczek I (1984) Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu erup-tion, Kilauea, 1969–1971. Contrib Mineral Petrol 88:24–35

    Article  Google Scholar 

  • Holbig ES, Grove TL (2008) Mantle melting beneath the Tibetan Plateau: experimental constraints on the generation of ultra-potassic lavas from Qiangtang, Tibet. J Geophys Res 113(B04210). doi:10.1029/2007JB005149

  • Johannes W, Chipman DW, Hays JF, Bell PM, Mao HK, Newton RC, Boettcher AL, Seifert F (1971) An interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction. Contrib Mineral Petrol 32:24–38

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102(B1):853–874

    Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of midocean ridge basalts 1. Experiments and methods. J Geophys Res 97(B5):6885–6906

    Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of midocean ridge basalts 2. Applications. J Geophys Res 97(B5):6907–6926

    Google Scholar 

  • Kinzler RJ, Grove TL (1993) Corrections and further discussion of the primary magmas of mid-ocean ridge basalts, 1 and 2. J Geophys Res 98(B12):22339–22347

    Google Scholar 

  • Kinzler RJ, Grove T (1999) Origin of depleted cratonic harzburgites by deep fractional melt extraction and shallow olivine cumulate infusion. In: Gurney JJ (ed) Proceedings of the 7th international kimberlite conference, pp 437–443

  • Klemme S, O’Neill HSC (2000) The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib Mineral Petrol 138(3):237–248. doi:10.1007/s004100050560

    Article  Google Scholar 

  • Kogiso T, Hirose K, Takahashi E (1998) Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth Planet Sci Lett 162(1–4):45–61. doi:10.1016/s0012-821x(98)00156-3

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Frost DJ (2003) High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett 216(4):603–617. doi:10.1016/s0012-821x(03)00538-7

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Pertermann M (2004) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 45(12):2407–2422. doi:10.1093/petrology/egh057

    Article  Google Scholar 

  • Krawczynski MJ, Olive JL (2011) A new fitting algorithm for petrologic mass-balance problems. Abstract V53B-2613, presented at 2011 Fall Meeting, AGU, San Francisco, Calif, 5–9 Dec

  • Kushiro I (1975) Nature of silicate melt and its significance in magma genesis—regularities in shift of liquidus boundaries involving olivine, pyroxene and silica minerals. Am J Sci 275(4):411–431

    Article  Google Scholar 

  • Kushiro I (1996) Partial melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: Basu A, Hart SR (eds) Earth processes: reading the isotopic code AGU monograph, vol 95. American Geophysical Union, Washington, DC, pp 109–122

  • Longhi J (1995) Liquidus equilibria of some primary lunar and terrestrial melts in the garnet stability. Geochim Cosmochim Acta 59(11):2375–2386

    Article  Google Scholar 

  • Longhi J (2002) Some phase equilibrium systematics of lherzolite melting: I. Geochem Geophys Geosyst 3:art. no.-1020

  • Longhi J (2005) Temporal stability and pressure calibration of barium carbonate and talc/pyrex pressure media in a piston-cylinder apparatus. Am Mineral 90:206–218

    Article  Google Scholar 

  • MacDonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. J Petrol 5:82–133

    Article  Google Scholar 

  • MacGregor I (1965) Stability fields of spinel and garnet peridotites in the synthetic system CaO–MgO–Al2O3–SiO2. Carnegie Inst Wash Year Book 64:126–134

    Google Scholar 

  • Médard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844

    Article  Google Scholar 

  • Moore JG, Clague DA (1987) Coastal lava flows from Mauna Loa and Hualalai, Kona, Hawaii. Bull Volcanol 57:752–764

    Article  Google Scholar 

  • Moore JG, Clague DA, Normark WA (1982) Diverse basalt types from Loihi seamount, Hawaii. Geology 10:88–92

    Article  Google Scholar 

  • Moore JG, Fornari DJ, Clague DA (1985) Basalts from the 1977 submarine eruption of Mauna Loa, Hawaii: new data on the variation of palagonitization rate with temperature. U S Geol Survey Bull 1663:1–11

    Google Scholar 

  • Naka J, Kanamatsu T, Lipman PW, Sisson TW, Tsuboyama N, Morgan JK, Smith JR, Ui T (2002) Deep-sea volcaniclastic sedimentation around the southern flank of Hawaii. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes: deep underwater perspectives. Amer Geophys Union Geophys Monogr 128:29–50

  • Nomade S, Renne PR, Mo XX, Zhao ZD, Zhou S (2004) Miocene volcanism in the Lhasa block, Tibet: spatial trends and geodynamic implications. Earth Planet Sci Lett 221(1–4):227–243

    Article  Google Scholar 

  • O’Neill HSC (1981) The transitions between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77(2):185–194. doi:10.1007/bf00636522

    Article  Google Scholar 

  • O’Hara MJ, Richardson SW, Wilson G (1971) Garnet peridotite stability and occurrence in crust and mantle. Contrib Mineral Petrol 32:48–68

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM, Hametner K, Gunther D, Schmidt MW (2004) Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochem Geophys Geosyst 5. doi:10.1029/2003gc000638

  • Presnall DC, Dixon JR, O’Donnell TH, Dixon SA (1979) Generation of mid-ocean ridge tholeiites. J Petrol 20:3–35

    Article  Google Scholar 

  • Sisson TW, Lipman PW, Naka J (2002) Submarine alkalic through tholeiitic shield-stage development of Kilauea volcano, Hawaii. In: Takahashi E, Lipman PW, Garcia MO, Naka J, Aramaki S (eds) Hawaiian volcanoes: deep underwater perspectives. Amer Geophys Union Geophys Monogr 128:193–219

  • Sisson TW, Kimura JI, Coombs ML (2009) Basanite-nephelinite suite from early Kilauea: carbonated melts of phlogopite-garnet peridotite at Hawaii’s leading magmatic edge. Contrib Mineral Petrol 158(6):803–829. doi:10.1007/s00410-009-0411-8

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source for Hawaiian shield lavas. Nature 434(7033):590–597

    Article  Google Scholar 

  • Stolper E, Sherman S Garcia M, Baker M, Seaman S (2004) Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii. Geochem Geophys Geosyst 5:Q07G15. doi:10.1029/2003gc000553

  • Takahahshi E, Nakajima K, Wright TL (1998) Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth Planet Sci Lett 162(1–4):63–80. doi:10.1016/s0012-821x(98)00157-5

    Article  Google Scholar 

  • Takahashi E (1986) Melting of a dry peridotite KLB-1 up to 14 GPa—implications on the origin of peridotitic upper mantle. J Geophys Res 91(B9):9367–9382

    Google Scholar 

  • Thibault Y, Edgar AD, Lloyd FE (1992) Experimental investigation of melts from a carbonated phlogopite lherzolite—implications for metasomatism in the continental lithospheric mantle. Am Mineral 77(7–8):784–794

    Google Scholar 

  • Till CB, Grove TL, Krawczynski MJ (2012) A melting model for variably depleted and enriched lherzolite in the plagioclase and spinel stability fields. J Geophys Res 117. doi:10.1029/2011jb009044

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39

    Article  Google Scholar 

  • Tormey DR, Grove TL, Bryan WB (1987) Experimental petrology of normal MORB near the Kane fracture zone: 22–25 N, mid-Atlantic ridge. Contrib Mineral Petrol 96:121–139

    Article  Google Scholar 

  • Ulmer P (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition; an experimental study to 30 kbars. Contrib Mineral Petrol 101(3):261–273

    Article  Google Scholar 

  • Wagner TP, Grove TL (1998) Melt/harzburgite reaction in the petrogenesis of tholeiitic magma from Liauea volcano, Hawaii. Contrib Mineral Petrol 131(1):1–12

    Article  Google Scholar 

  • Walker D, Agee CB (1988) Ureilite compaction. Meteoritics 23(1):81–91

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60

    Article  Google Scholar 

  • Walter MJ, Presnall DC (1994) Melting behavior of simplified lherzolite in the system CaO–MgO–Al2O3–SiO2–Na2O from 7 to 35 kbar. J Petrol 35(2):329–359

    Article  Google Scholar 

  • Williams HM, Turner SP, Pearce JA, Kelley SP, Harris NBW (2004) Nature of the source regions for post-collisional, potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modeling. J Petrol 45(3):555–607

    Article  Google Scholar 

  • Wyllie PJ, Huang WL (1976) Carbonation and melting reactions in system CaO–MgO–SiO2–CO2 at mantle pressures with geophysical and petrological applications. Contrib Mineral Petrol 54(2):79–107. doi:10.1007/bf00372117

    Article  Google Scholar 

  • Yang HJ, Kinzler RJ, Grove TL (1996) Experiments and models of anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to 10 kbar. Contrib Mineral Petrol 124:1–18

    Article  Google Scholar 

Download references

Acknowledgments

The paper is dedicated to the memory of a great igneous petrologist, Ian Carmichael. Ian was like a father to many of us. He was always there to provide encouragement, support and criticism. Often all three of these were administered with equal enthusiasm. This work was first presented at a career celebration for Ian held at Camp Davis field station, Wyoming, August 12–16, 2005. Support for this work was provided through the National Science Foundation from grants EAR-0507486, EAR-0538179 and EAR-1118598. The authors gratefully acknowledge constructive comments of two anonymous reviewers and Tom Sisson, who suggested that we look at the melting conditions of the common and voluminous alkali basalts and tholeiites present at Hawaii.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy L. Grove.

Additional information

Communicated by G. Moore.

An erratum to this article is available at http://dx.doi.org/10.1007/s00410-014-1086-3.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Supplementary material 2 (XLS 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grove, T.L., Holbig, E.S., Barr, J.A. et al. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite. Contrib Mineral Petrol 166, 887–910 (2013). https://doi.org/10.1007/s00410-013-0899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-013-0899-9

Keywords

Navigation