Skip to main content
Log in

Thermal expansion of plagioclase feldspars

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The volume thermal expansion coefficient and the anisotropy of thermal expansion were determined for nine natural feldspars with compositions, in terms of albite (NaAlSi3O8, Ab) and anorthite (CaAl2Si2O8, An), of Ab100, An27Ab73, An35Ab65, An46Ab54, An60Ab40, An78Ab22, An89Ab11, An96Ab4 and An100 by high resolution powder diffraction with a synchrotron radiation source. Unit-cell parameters were determined from 124 powder patterns of each sample, collected over the temperature range 298–935 K. The volume thermal expansion coefficient of the samples determined by a linear fit of V/V 0 = α(T − T 0) varies with composition (X An in mol %) as:

$$ \alpha_{V} = 2.90\left( 4 \right) \times 10^{ - 5} - 3.0\left( 2 \right) \times 10^{ - 7} *X_{\text{An}} + 1.8\left( 2 \right) \times 10^{ - 9} *X_{\text{An}}^{2} $$

Two empirical models for the non-linear behaviour of volume with temperature give a better fit to the experimental data. The change with composition in the a° parameter of the non-linear Holland-Powell model V/V 0 = 1 + a°(T − T 0) + 20a° (√T − √T 0) is:

$$ a^\circ = 4.96\left( 5 \right) \times 10^{ - 5} - 4.7\left( 2 \right) \times 10^{ - 7} *X_{\text{An}} + 2.2\left( 2 \right) \times 10^{ - 9} *X_{\text{An}}^{2} $$

For the Berman model, V/V 0 = a 1(T − T 0) + a 2*(TT 0)2, the parameters change with composition as:

$$ \begin{aligned}& a_{1} = 2.44\left( {15} \right) \times 10^{ - 5} - 3.1\left( 6 \right) \times 10^{ - 7} *X_{\text{An}}\\& \quad + 1.8\left( 5 \right) \times 10^{ - 9} *X_{\text{An}}^{2} \\& a_{2} = 9\left( 1 \right) \times 10^{ - 9} - 4\left( 2 \right) \times 10^{ - 11} *X_{\text{An}} \\ \end{aligned} $$

The thermal expansion of all plagioclases is very anisotropic, with more than 70% of the volume expansion being accommodated by a direction fairly close to the (100) plane normal, whereas perpendicular directions exhibit smaller, and in some cases slightly negative or zero, thermal expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson OL, Isaak D, Oda HT (1992) High temperature elastic constant data on minerals relevant to geophysics. Rev Geophys 30:57–92

    Article  Google Scholar 

  • Angel RJ (1992) Order-disorder and the high-pressure \( P\bar{1} - I\bar{1} \) transition in anorthite. Am Mineral 77:923–929

    Google Scholar 

  • Angel RJ (2004) Equations of state of Plagioclase Feldspars. Contrib Mineral Petrol 146:506–512

    Article  Google Scholar 

  • Angel RJ, Carpenter MA, Finger LW (1990) Structural variation associated with compositional variation and order-disorder behavior in anorthite-rich feldspars. Am Mineral 75:150–162

    Google Scholar 

  • Angel RJ, Hazen RM, McCormick TC, Prewitt CT, Smyth JR (1988) Comparative compressibility of end-member feldspars. Phys Chem Minerals 15:313–318

    Article  Google Scholar 

  • Beckenkamp J (1881) Uber die ausdehnung monosymmetrischer und asymmetrischer krystalle durch die würrme. Z Kristall 5:436–466

    Google Scholar 

  • Benusa M, Angel RJ, Ross NL (2005) Compression of albite, NaAlSi3O8. Am Mineral 90:1115–1120

    Article  Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29:445–522

    Google Scholar 

  • Brown WL, Openshaw RE, McMillan PF, Henderson CMB (1984) A review of the expansion behavior of alkali feldspars: coupled variations in cell parameters and possible phase transitions. Am Mineral 69:1058–1071

    Google Scholar 

  • Carpenter MA (1986) Experimental delineation of the “e” = \( I\bar{1} \) and “e” = \( C\bar{1} \) transformations in intermediate plagioclase feldspars. Phys Chem Minerals 13:119–139

    Article  Google Scholar 

  • Carpenter MA (1992) Equilibrium thermodynamics of Al/Si ordering in anorthite. Phys Chem Minerals 19:1–24

    Article  Google Scholar 

  • Carpenter MA, McConnell JDC, Navrotsky A (1985) Enthalpies of ordering in the plagioclase feldspar solid solution. Geochim Cosmochim Acta 49:947–966

    Article  Google Scholar 

  • Czank M, Schultz H (1971) Thermal expansion of anorthite. Naturwissenschaften 58:94

    Article  Google Scholar 

  • Fei Y (1995) Thermal expansion. In: Ahrens JA (ed) A handbook of physical constants, mineral physics and crystallography, AGU Reference Shelf, 2: 29–44. ISBN 0-87590-852-7

  • Fitch AN (2004) The high resolution powder diffraction beam line at ESRF. J Res NIST 109:133–142

    Google Scholar 

  • Foit FF, Peacor DR (1973) The anorthite crystal structure at 410 and 830 C. Am Mineral 58:665–675

    Google Scholar 

  • Ghose S, McMullan RK, Weber HP (1993) Neutron diffraction studies of the \( {\rm P}\bar{1} - {\rm I}\bar{1} \) transition in anorthite, CaAl2Si2O8, and the crystal structure of the body-centered phase at 514 K. Z Kristall 204:215–237

    Article  Google Scholar 

  • Gottschalk M (1997) Internally consistent thermodynamic data for rock-forming minerals in the system SiO2-TiO2-Al2O3-CaO-MgO-FeO-K2O-Na2O–H2O-CO2. Eur J Mineral 9:175–223

    Google Scholar 

  • Grundy HD, Brown WL (1969) A high-temperature X-ray study of the equilibrium forms of albite. Mineral Mag 37:156–172

    Article  Google Scholar 

  • Grundy HD, Brown WL (1974) A high-temperature X-ray study of low and high plagioclase feldspars. In; MacKenzie WS, Zussman J (eds) Proceedings of NATO Advanced Studies Institute on Feldspars, Manchester University Press, pp 162–173

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Hovis GL, Graeme-Barber A (1997) Volumes of K-Na mixing for low albite-microcline crystalline solutions at elevated temperature: a test of regular solution thermodynamic models. Am Mineral 82:158–164

    Google Scholar 

  • Hovis GL, Medford A, Conlon M, Tether A, Romanoski A (2010) Principles of thermal expansion in the feldspar system. Am Mineral (in press)

  • Knight KS, Price GD (2008) Powder neutron-diffraction studies of clinopyroxenes. I: the crystal structure and thermoelastic properties of jadeite between 1.5 and 270 K. Can Mineral 46:1593–1622

    Article  Google Scholar 

  • Kozu S, Ueda J (1933) Thermal expansion of plagioclase. Proc Imp Acad Tokyo 9:262–264

    Google Scholar 

  • Kroll H, Ribbe PH (1983) Lattice parameters, composition and Al, Si order in alkali feldspars. In: Mineralogical Society of America. Rev Mineral 2:57–99

  • Kroll H, Bambauer HU, Schirmer U (1980) The high albite-monalbite and analbite-monalbite transitions. Am Mineral 65:1192–1211

    Google Scholar 

  • Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos National Laboratory Report. LAUR 86-748 (2004)

  • McConnell JDC, McKie D (1960) The kinetics of the ordering process in triclinic NaAlSi3O8. Mineral Mag 32:436–454

    Article  Google Scholar 

  • Németh P, Tribaudino M, Bruno E, Buseck PR (2007) TEM investigation of Ca-rich plagioclase: structural fluctuations related to the \( P\bar{1} - I\bar{1} \) phase transition. Am Mineral 92:1080–1086

    Article  Google Scholar 

  • Nestola F, Curetti N, Benna P, Ivaldi G, Angel RJ, Bruno E (2008) Compressibility and high-pressure behaviour of Ab63Or27An10 anorthoclase. Can Mineral 46:1433–1454

    Article  Google Scholar 

  • Nye JF (1957) Physical properties of crystals. Oxford University Press, Oxford, 322 pp

  • Ohashi Y (1982) A program to calculate the strain tensor from two sets of unit-cell parameters. In: Hazen RM, Finger LW (eds) Comparative crystal chemistry. Wiley, Chichester, pp 92–102

    Google Scholar 

  • Ohashi Y, Finger LW (1973) Lattice deformations in feldspars. Carnegie Inst Wash YB 72:569–573

    Google Scholar 

  • Pawley AR, Redfern SAT, Holland TJB (1996) Volume behaviour of hydrous minerals at high pressure and temperature: 1. Thermal expansion of lawsonite, zoisite, clinozoisite and diaspore. Am Mineral 81:335–340

    Google Scholar 

  • Prewitt CT, Sueno S, Papike JJ (1976) The crystal structures of high albite and monalbite at high temperatures. Am Mineral 6l:1213–1225

    Google Scholar 

  • Redfern SAT (1992) The effect of Al/Si disorder on the \( P\bar{1} - I\bar{1} \) phase co-elastic phase transition in Ca-rich plagioclase. Phys Chem Minerals 19:246–254

    Article  Google Scholar 

  • Redfern SAT, Salje EKH (1987) Thermodynamics of plagioclase. II. Temperature evolution of the spontaneous strain at the \( P\bar{1} - I\bar{1} \) phase transition in anorthite. Phys Chem Minerals 14:189–195

    Article  Google Scholar 

  • Redfern SAT, Graeme-Barber A, Salje EKH (1988) Thermodynamics of plagioclase III: spontaneous strain at the \( P\bar{1} - I\bar{1} \) phase transition in Ca-rich plagioclase. Phys Chem Minerals 16:157–163

    Article  Google Scholar 

  • Salje EKH (1985) Thermodynamics of sodium Feldspar. I: order parameter treatment and strain induced coupling effects. Phys Chem Minerals 12:93–98

    Article  Google Scholar 

  • Salje EKH, Kuscholke B, Wruck B, Kroll H (1985) Thermodynamics of sodium feldspar II: experimental results and numerical calculations. Phys Chem Minerals 12:99–107

    Article  Google Scholar 

  • Saucier H, Saplevitch A (1962) La dilatation thermique des feldspaths. Norsk Geol Tidsskr 42:224–243

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Google Scholar 

  • Skinner BJ (1966) Thermal expansion. In: Clark SP (ed) Handbook of physical constants, Geological Society of America Memoir 97:75–96

  • Stewart DB, Von Limbach D (1967) Thermal expansion of low and high albite. Am Mineral 52:389–413

    Google Scholar 

  • Stewart DB, Walker GW, Wright TL, Fahey JJ (1966) Physical properties of calcic labradorite from Lake County, Oregon. Am Mineral 31:177–197

    Google Scholar 

  • Suzuki I, Okajima S, Seya K (1979) Thermal expansion of single-crystal manganosite. J Phys Earth 27:63–69

    Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystall 34:210–213

    Article  Google Scholar 

  • Tribaudino M, Nestola F, Cámara F, Domeneghetti MC (2002) The high temperature P21/c-C2/c phase transition in Fe-free pyroxene (Ca0.15Mg1.85Si2O6): structural and thermodynamic behavior. Am Mineral 87:648–657

    Google Scholar 

  • Tribaudino M, Benna P, Nestola F, Meneghini C, Bruno E (2005) Thermodynamic behaviour of the high temperature phase transition \( P\bar{1} - I\bar{1} \) along the join An-SrF (CaAl2Si2O8–SrAl2Si2O8). Phys Chem Minerals 32:314–321

    Article  Google Scholar 

  • Tribaudino M, Bruno M, Iezzi G, Della Ventura G, Margiolaki I (2008) The thermal behavior of richterite. Am Mineral 93:1659–1665

    Article  Google Scholar 

  • Willaime C, Brown WL, Pernaud MC (1974) On the orientation of the thermal and compositional strain ellipsoids in feldspars. Am Mineral 59:45l–464

    Google Scholar 

  • Winter JK, Ghose S, Okamura FP (1977) A high-temperature study of the thermal expansion and the anisotropy of the sodium atom in low albite. Am Mineral 62:921–931

    Google Scholar 

  • Winter JK, Ghose S, Okamura FP (1979) A high-temperature structural study of high albite, monalbite and the analbite–monalbite phase transition. Am Mineral 64:409–423

    Google Scholar 

  • Wruck B, Salje EKH, Graeme-Barber A (1991) Kinetic rate laws derived from order parameter theory IV: kinetics of Al, Si disordering in Na-feldspars. Phys Chem Minerals 17:700–710

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Michael Carpenter for supplying us with seven of the plagioclase samples used in this study. This work was supported in part by NSF in the form of grant EAR-0738692 to N.L. Ross and R.J. Angel. Fernando Cámara was supported by funding by CNR-IGG through the project TAP01.004.002. We thank the ESRF for beamtime on the high resolution powder diffraction beamline ID31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tribaudino.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 208 kb)

Supplementary material 2 (XLS 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tribaudino, M., Angel, R.J., Cámara, F. et al. Thermal expansion of plagioclase feldspars. Contrib Mineral Petrol 160, 899–908 (2010). https://doi.org/10.1007/s00410-010-0513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0513-3

Keywords

Navigation