Skip to main content
Log in

Formation and alteration of plagiogranites in an ultramafic-hosted detachment fault at the Mid-Atlantic Ridge (ODP Leg 209)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low δ18O of altered plagiogranite veins (+3.0–4.2‰) and adjacent serpentinites (+ 2.6–3.7‰). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agar SM, Lloyd GE (1997) Deformation of Fe–Ti oxides in gabbroic shear zones from the MARK area. In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 153. Ocean Drilling Program, Texas A&M University, College Station, pp 123–141

    Google Scholar 

  • Aldiss DT (1981) Plagiogranites from the ocean crust and ophiolites. Nature 289:577–578

    Article  Google Scholar 

  • Alt JC, Shanks WC III, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8:Q08002

    Article  Google Scholar 

  • Aumento F (1969) Diorites from the Mid-Atlantic Ridge at 45°N. Science 165:1112–1113

    Article  Google Scholar 

  • Austrheim H, Prestvik T (2008) Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north-central Norway. Lithos 104:177–198

    Article  Google Scholar 

  • Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater–peridotite interaction: first insights from ODP Leg 209, MAR 15°N. Geochem Geophys Geosyst 5:Q09F26

    Article  Google Scholar 

  • Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15N (ODP Leg 209, Site 1274). Geophys Res Lett 33:L13306

    Article  Google Scholar 

  • Barriga F, Fyfe WS (1983) Development of rodingite in basaltic rocks in serpentinites, East Liguria, Italy. Contrib Mineral Petrol 84:146–151

    Article  Google Scholar 

  • Bogdanov YA, Bortnikov NS, Vikent’ev IV, Gurvich EG, Sagalevich AM (1997) A new type of modern mineral-forming system: black smokers of the hydrothermal field at 14°45′N latitude, Mid-Atlantic Ridge. Geol Ore Deposits 39:58–78

    Google Scholar 

  • Boschi C, Früh-Green GL, Delacour A, Karson JA, Kelley DS (2006a) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochem Geophys Geosyst 7:Q01004

    Article  Google Scholar 

  • Boschi C, Früh-Green GL, Escartín J (2006b) Occurrence and significance of serpentinite-hosted, talc- and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes: an overview. Ofioliti 31:129–140

    Google Scholar 

  • Cannat M, Bideau D, Bougault H (1992) Serpentinized peridotites and gabbros in the Mid-Atlantic axial valley at 15°37′N and 16°52′N. Earth Planet Sci Lett 109:87–106

    Article  Google Scholar 

  • Cannat M, Ceuleneer G, Fletcher J (1997) Localization of ductile strain and the magmatic evolution of gabbroic rocks drilled at the Mid-Atlantic Ridge (23°N). Proceedings of the Ocean Drilling Program, Scientific Results 153:77–98

    Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer: the Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244

    Article  Google Scholar 

  • Charlou JL, Bougault H, Appriou P, Nelsen T, Rona P (1991) Different TDM/CH4 hydrothermal plume signatures: TAG site at 26°N and serpentinized ultrabasic diapir at 15°05′N on the Mid-Atlantic Ridge. Geochim Cosmochim Acta 55:3209–3222

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2007) Ti diffusion in zircon. Chem Geol 242:473–486

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70:517–543

    Article  Google Scholar 

  • Cosgrove JW (1997) The influence of mechanical anisotropy on the behaviour of the lower crust. Tectonophysics 280:1–14

    Article  Google Scholar 

  • Dekov VM, Cuadros J, Shanks WC, Koski RA (2008) Deposition of talc–kerolite-smectite–smectite at seafloor hydrothermal vent fields: evidence from mineralogical, geochemical and oxygen isotope studies. Chem Geol 247:171–194

    Article  Google Scholar 

  • Demény A, Sharp ZD, Pfeifer HR (1997) Mg-metasomatism and formation conditions of Mg–chlorite–muscovite–quartzphyllites (leucophyllites) of the Eastern Alps (W. Hungary) and their relations to Alpine whiteschists. Contrib Mineral Petrol 128:247–260

    Article  Google Scholar 

  • Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu YL, Robinson PT, Snow JE, Stephen RA, Trimby PW, Worm HU, Yoshinobu A (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179:31–51

    Article  Google Scholar 

  • Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB—a semiquantitative thermometer. Am Mineral 83:952–969

    Google Scholar 

  • Escartín J, Mével C, MacLeod CJ, McCaig AM (2003) Constraints on deformation conditions and the origin oc oceanic detachments: the Mid-Atlantic Rige core complex at 15°45′N. Geochem Geophys Geosyst 4(8):1067

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Article  Google Scholar 

  • Frost BR (1976) Limits to the assemblage forsterite–anorthite as inferred from peridotite hornfelses, Icicle Creek, Washington. Am Mineral 61:732–750

    Google Scholar 

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368

    Article  Google Scholar 

  • Govindaraju K, Roelandts I (1989) 1988 compilation report on trace elements in six ANRT rock reference samples: diorite DR-N, serpentine UB-N, bauxite BX-N, disthene DT-N, granite GS-N and potash feldspar FK-N. Geostand Newsl 13:5–67

    Article  Google Scholar 

  • Gràcia E, Charlou JL, Radford-Knoery J, Parson LM (2000) Non-transform offsets along the Mid-Atlantic Ridge south of the Azores (38°N–34°N): ultramafic exposures and hosting of hydrothermal vents. Earth Planet Sci Lett 177:89–103

    Article  Google Scholar 

  • Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–646

    Article  Google Scholar 

  • Grimes CB, John BE, Cheadle MJ, Wooden JL (2008) Protracted construction of gabbroic crust at a slow spreading ridge: constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30°N, MAR). Geochemistry, Geophysics, Geosystems 9:Q08,012

    Article  Google Scholar 

  • Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing in Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568

    Article  Google Scholar 

  • Hess HH (1933) The problem of serpentinization and the origin of certain crysotile asbestos, talc and soapstone deposits. Econ Geol 28:634–657

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Holland TJB, Blundy JD (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Hooper RJ, Hatcher RD Jr (1988) Mylonites from the Towaliga fault zone, central Georgia: products of heterogenous non-coaxial deformation. Tectonophysics 152:1–17

    Article  Google Scholar 

  • Hostetler PB, Coleman RG, Mumpton FA, Evans BW (1966) Brucite in Alpine serpentinites. Am Mineral 51:75–98

    Google Scholar 

  • Imai N, Terashima S, Itoh S, Ando A (1995) 1994 compilation values for GSJ reference samples, "Igneous rock series". Geochem J 29:91–95

    Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorentz V, Wänke H (1979) The abundance of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. In: Merrill RB (ed) Proceedings of the 10th lunar and planetary science conference. Pergamon Press, New York, pp 2031–2050

    Google Scholar 

  • John T, Schenk V, Mezger K, Tembo F (2004) Timing and P-T evolution of whiteschist metamorphism in the Lufilian Arc–Zambezi Belt orogen (Zambia): implications for the assembly of Gondwana. Journal of Geology 112:71–90

    Article  Google Scholar 

  • John T, Klemd R, Gao J, Garbe-Schönberg D (2008) Trace element mobilization in slabs due to non steady-state fluid–rock interaction: constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos 103:1–24

    Article  Google Scholar 

  • Johnson SP, Oliver GJH (1998) A second natural occurrence of yoderite. J Metamorph Geol 16:809–818

    Article  Google Scholar 

  • Johnson SP, Oliver GJH (2002) High fO2 metasomatism during whiteschist metamorphism, Zambezi Belt, Northern Zimbabwe. J Petrol 43:271–290

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Comput Geosci 18:899–947

    Article  Google Scholar 

  • Jöns N, Schenk V (2004) Petrology of whiteschists and associated rocks at Mautia Hill (Tanzania): fluid infiltration during high-grade metamorphism? J Petrol 45:1959–1981

    Article  Google Scholar 

  • Kelemen PB, Matsumoto T, Shipboard Scientific Party (1998) Geological results of Mode 98, Leg1: JAMSTEC/WHOI Shinkai 6500 cruise to 15°N, Mid-Atlantic Ridge. Eos Trans AGU 79 (45) (Fall Meeting Suppl), Abstract U22A–18

    Google Scholar 

  • Kelemen PB, Kikawa E, Miller DJ et al (2004) Proceedings of the Ocean Drilling Program, initial reports, vol 209 [CD-ROM]. Ocean Drilling Program, Texas A&M University, College Station

    Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Frh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, The AT3-60 Shipboard Party (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:145–149

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow JE, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Mineral Petrol 146:414–432

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow JE (2005) Hydrous partial melting within the lower oceanic crust. Terra Nova 17:286–291

    Article  Google Scholar 

  • Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib Mineral Petrol 153:67–84

    Article  Google Scholar 

  • Lagabrielle Y, Bideau D, Cannat M, Karson JA, Mével C (1998) Ultramafic-mafic plutonic rock suites exposed along the Mid-Atlantic Ridge (10°N–30°N)—symmetrical asymmetrical distribution and implications for seafloor spreading processes. In: Buck WR, Delaney P, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at mid ocean ridges, AGU geophysical monograph, vol 106. American Geophysical Union, Washington, DC, pp 153–176

    Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. Eur J Mineral 9:623–651

    Google Scholar 

  • Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241

    Article  Google Scholar 

  • McCaig AM, Cliff RA, Escartín J, Fallick AE, MacLeod CJ (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35:935–938

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Moody JB (1976) Serpentinization: a review. Lithos 9:125–138

    Article  Google Scholar 

  • Munz IA (1990) Whiteschists and orthoamphibole-cordierite rocks and the P–T–t path of the Modum Complex, South Norway. Lithos 24:181–200

    Article  Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post melting processes beneath Mid-Ocean ridges. J Petrol 45:2423–2458

    Article  Google Scholar 

  • Normand C, Williams-Jones AE (2007) Physicochemical conditions and timing of rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine, Asbestos, Québec. Geochem Trans 8:11

    Article  Google Scholar 

  • Passchier CW, Simpson C (1986) Porphyroclast systems as kinematic indicators. J Struct Geol 8:831–843

    Article  Google Scholar 

  • Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem Geol 234:179–210

    Article  Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  Google Scholar 

  • Robinson PT, Erzinger J, Emmermann R (2002) The composition and origin of igneous and hydrothermal veins in the lower ocean crust - ODP Hole 735B, Southwest Indian Ridge. In: Natland JH, Dick HJB, Miller DJ, von Herzen RP (eds) Proceedings of the Ocean Drilling Program, scientific results, vol 176. Ocean Drilling Program, Texas A&M University, College Station, pp 1–66

    Google Scholar 

  • Schreyer W (1973) Whiteschists: a high-pressure rock and its geologic significance. J Geol 81:735–739

    Article  Google Scholar 

  • Schroeder T, John BE (2004) Strain localization on an oceanic detachment fault system, Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochem Geophys Geosyst 5:Q11007

    Article  Google Scholar 

  • Schroeder T, John B, Frost BR (2002) Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges. Geology 30:367–370

    Article  Google Scholar 

  • Schroeder T, Cheadle MJ, Dick HJB, Faul U, Casey JF, Kelemen PB (2007) Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge: a structural synthesis of ODP Leg 209. Geochem Geophys Geosyst 8:Q06015

    Article  Google Scholar 

  • Sharp ZD (1990) A laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357

    Article  Google Scholar 

  • Smith DK, Cann JR, Escartín J (2006) Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature 442:440–443

    Article  Google Scholar 

  • Spandler C, Hermann J, Faure K, Mavrogenes JA, Arculus RJ (2008) The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones: evidence from the high-pressure subduction mélange of New Caledonia. Contrib Mineral Petrol 155:181–198

    Article  Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contrib Mineral Petrol 70:407–419

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard JP, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogasawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skøar Ø, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng YF (2004) Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39

    Article  Google Scholar 

  • Wolery TJ (2002) EQ3/6—software for geochemical modeling. Lawrence Livermore National Laboratory, University of California, Livermore

Download references

Acknowledgments

We thank P. Appel and B. Mader for help with the microprobe analyses, H. Anders and A. Klügel for support during LA-ICP-MS work, W. Hale for help during sampling, A. Weinkauf for XRF analyses, A. Pack for oxygen isotope data and D. Garbe-Schönberg for whole-rock trace element measurements. M. Hentscher and F. Klein provided invaluable support during EQ3/6 database compilation and modeling. J. Koepke is thanked for providing the compilation of chemical data of plagiogranites. Reviews by B. R. Frost and an anonymous reviewer significantly improved the quality of the paper. J. Hoefs is thanked for the editorial handling. This research used samples supplied by the Ocean Drilling Program (ODP), which is sponsored by the U.S. National Science foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI). Funding was provided by the Marum Excellence Cluster “The Ocean in the Earth System” and the Deutsche Forschungsgemeinschaft through grant BA 1605/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Jöns.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

XLS (199 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jöns, N., Bach, W. & Schroeder, T. Formation and alteration of plagiogranites in an ultramafic-hosted detachment fault at the Mid-Atlantic Ridge (ODP Leg 209). Contrib Mineral Petrol 157, 625–639 (2009). https://doi.org/10.1007/s00410-008-0357-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0357-2

Keywords

Navigation