Skip to main content
Log in

Effects of Continuous Positive Airway Pressure on Cell Adhesion Molecules in Patients with Obstructive Sleep Apnea: A Meta-Analysis

  • OBSTRUCTIVE SLEEP APNEA
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Previous studies have confirmed that patients with obstructive sleep apnea (OSA) have higher systemic inflammatory markers, including intercellular adhesion molecule-1(ICAM-1), vascular cell adhesion molecule-1(VCAM-1), and E-selectin compared to control subjects. However, the effects of continuous positive airway pressure (CPAP) therapy on circulating levels of ICAM-1, VCAM-1, and E-selectin in OSA patients remain inconsistent. Therefore, the primary purpose of the present meta-analysis is to estimate the effect of CPAP therapy on these cell adhesion molecules (CAMs) in patients with OSA.

Methods

The PubMed, Scopus, Embase, and Cochrane Library databases were searched. The overall effects were measured by the standardized mean difference (SMD) with a 95% confidence interval (CI). A random effects model or a fixed-effects model was used, depending on the heterogeneity of the studies.

Results

A total of 11 studies were included, comprising 650 OSA patients. The pooled results showed that CPAP therapy significantly decreased ICAM-1 (SMD =  − 0.283, 95% CI   − 0.464 to − 0.101, p = 0.002) and E-selectin levels (SMD =  − 0.349, 95% CI   − 0.566 to − 0.133, p = 0.002). In contrast, there was no significant improvement of VCAM-1 levels after CPAP treatment (SMD =  − 0.160, 95% CI   − 0.641 to 0.320, p = 0.513).

Conclusions

Our meta-analysis demonstrated that CPAP treatment significantly decreased the circulating levels of ICAM-1 and E-selectin in OSA patients. Thus, ICAM-1 and E-selectin may be effective markers to evaluate CPAP therapy for reducing OSA cardiovascular risk in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Collen J, Lettieri C, Wickwire E, Holley A (2020) Obstructive sleep apnea and cardiovascular disease, a story of confounders! Sleep Breath 24(4):1299–1313. https://doi.org/10.1007/s11325-019-01945-w

    Article  PubMed  Google Scholar 

  2. Ma L, Zhang J, Liu Y (2016) Roles and mechanisms of obstructive sleep apnea-hypopnea syndrome and chronic intermittent hypoxia in atherosclerosis: evidence and prospective. Oxid Med Cell Longev 2016:8215082. https://doi.org/10.1155/2016/8215082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huang T, Goodman M, Li X, Sands SA, Li J, Stampfer MJ, Saxena R, Tworoger SS, Redline S (2021) C-reactive protein and risk of OSA in four US cohorts. Chest. https://doi.org/10.1016/j.chest.2021.01.060

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y (2003) Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol 94(1):179–84. https://doi.org/10.1152/japplphysiol.00177.2002

    Article  CAS  PubMed  Google Scholar 

  5. Jin F, Liu J, Zhang X, Cai W, Zhang Y, Zhang W, Yang J, Lu G, Zhang X (2017) Effect of continuous positive airway pressure therapy on inflammatory cytokines and atherosclerosis in patients with obstructive sleep apnea syndrome. Mol Med Rep 16(5):6334–6339. https://doi.org/10.3892/mmr.2017.7399

    Article  CAS  PubMed  Google Scholar 

  6. Harjunpaa H, Llort Asens M, Guenther C, Fagerholm SC (2019) Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol 10:1078. https://doi.org/10.3389/fimmu.2019.01078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blankenberg S, Barbaux S, Tiret L (2003) Adhesion molecules and atherosclerosis. Atherosclerosis 170(2):191–203. https://doi.org/10.1016/s0021-9150(03)00097-2

    Article  CAS  PubMed  Google Scholar 

  8. Pak VM, Grandner MA, Pack AL (2014) Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease. Sleep Med Rev 18(1):25–34. https://doi.org/10.1016/j.smrv.2013.01.002

    Article  PubMed  Google Scholar 

  9. Pak VM, Maislin DG, Keenan BT, Townsend RR, Benediktsdottir B, Dunbar SB, Pack AI, Gislason T, Kuna ST (2021) Changes in sleepiness and 24-h blood pressure following 4 months of CPAP treatment are not mediated by ICAM-1. Sleep Breath. https://doi.org/10.1007/s11325-020-02257-0

    Article  PubMed  Google Scholar 

  10. Nowicki M, Zawiasa-Bryszewska A, Taczykowska M, Białasiewicz P, Nowak D (2020) The pattern of overnight changes in novel markers of acute kidney injury in patients with obstructive sleep apnea. Adv Clin Exp Med 29(9):1065–1072. https://doi.org/10.17219/acem/123356

  11. Nadeem R, Molnar J, Madbouly EM, Nida M, Aggarwal S, Sajid H, Naseem J, Loomba R (2013) Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin Sleep Med 9(10):1003–1012. https://doi.org/10.5664/jcsm.3070

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341. https://doi.org/10.1016/j.ijsu.2010.02.007

    Article  PubMed  Google Scholar 

  13. Kim SY, Park JE, Lee YJ, Seo HJ, Sheen SS, Hahn S, Jang BH, Son HJ (2013) Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J Clin Epidemiol 66(4):408–414. https://doi.org/10.1016/j.jclinepi.2012.09.016

    Article  PubMed  Google Scholar 

  14. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, Thomas J (2019) Updated guidance for trusted systematic reviews: a new edition of the cochrane handbook for systematic reviews of interventions. Cochrane Database Syst Rev. 10:ED000142. https://doi.org/10.1002/14651858.ED000142

  15. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pak VM, Keenan BT, Jackson N, Grandner MA, Maislin G, Teff K, Schwab RJ, Arnardottir ES, Júlíusson S, Benediktsdottir B, Gislason T, Pack AL (2015) Adhesion molecule increases in sleep apnea: beneficial effect of positive airway pressure and moderation by obesity. Int J Obes 39(3):472–479. https://doi.org/10.1038/ijo.2014.123

    Article  CAS  Google Scholar 

  17. Zamarrón C, Riveiro A, Gude F (2011) Circulating levels of vascular endothelial markers in obstructive sleep apnoea syndrome. Effects of nasal continuous positive airway pressure. Arch Med Sci. 7(6):1023–8. https://doi.org/10.5114/aoms.2011.26615

    Article  PubMed  PubMed Central  Google Scholar 

  18. Campos-Rodriguez F, Asensio-Cruz MI, Cordero-Guevara J, Jurado-Gamez B, Carmona-Bernal C, Gonzalez-Martinez M, Troncoso MF, Sanchez-Lopez V, Arellano-Orden E, Garcia-Sanchez MI, Martinez-Garcia MA (2019) Effect of continuous positive airway pressure on inflammatory, antioxidant, and depression biomarkers in women with obstructive sleep apnea: a randomized controlled trial. Sleep. https://doi.org/10.1093/sleep/zsz145

    Article  PubMed  Google Scholar 

  19. Chin K, Nakamura T, Shimizu K, Mishima M, Nakamura T, Miyasaka M, Ohi M (2000) Effects of nasal continuous positive airway pressure on soluble cell adhesion molecules in patients with obstructive sleep apnea syndrome. Am J Med 109(7):562–567. https://doi.org/10.1016/s0002-9343(00)00580-5

    Article  CAS  PubMed  Google Scholar 

  20. Yoshikawa M, Yamauchi M, Fujita Y, Koyama N, Fukuoka A, Tamaki S, Yamamoto Y, Tomoda K, Kimura H (2014) The impact of obstructive sleep apnea and nasal CPAP on circulating adiponectin levels. Lung 192(2):289–295. https://doi.org/10.1007/s00408-013-9550-9

    Article  CAS  PubMed  Google Scholar 

  21. Nikitidou O, Daskalopoulou E, Papagianni A, Vlachogiannis E, Dombros N, Liakopoulos V (2020) The impact of OSA and CPAP treatment on cell adhesion molecules’ night-morning variation. Sleep Breath. https://doi.org/10.1007/s11325-020-02232-9

    Article  PubMed  Google Scholar 

  22. Harańczyk M, Konieczyńska M, Płazak W (2021) Endothelial dysfunction in obstructive sleep apnea patients. Sleep Breath. https://doi.org/10.1007/s11325-021-02382-4

    Article  PubMed  Google Scholar 

  23. Htoo AK, Greenberg H, Tongia S, Chen G, Henderson T, Wilson D, Liu SF (2006) Activation of nuclear factor kappaB in obstructive sleep apnea: a pathway leading to systemic inflammation. Sleep Breath 10(1):43–50. https://doi.org/10.1007/s11325-005-0046-6

    Article  PubMed  Google Scholar 

  24. Petreski T, Piko N, Ekart R, Hojs R, Bevc S (2021) Review on inflammation markers in chronic kidney disease. Biomedicines. https://doi.org/10.3390/biomedicines9020182

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frijns CJ, Kappalle LJ (2002) Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 33(8):2115–2122. https://doi.org/10.1161/01.str.0000021902.33129.69

    Article  CAS  PubMed  Google Scholar 

  26. Marchini T, Mitre LS, Wolf D (2021) Inflammatory cell recruitment in cardiovascular disease. Front Cell Dev Biol 9:635527. https://doi.org/10.3389/fcell.2021.635527

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oberg BP, McMenamin E, Lucas FL, McMonagle E, Morrow J, Ikizler TA, Himmelfarb J (2004) Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int 65(3):1009–1016. https://doi.org/10.1111/j.1523-1755.2004.00465.x

    Article  PubMed  Google Scholar 

  28. Landray MJ, Wheeler DC, Lip GY, Newman DJ, Blann AD, McGlynn FJ, Ball S, Townend JN, Baigent C (2004) Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) study. Am J Kidney Dis 43(2):244–253. https://doi.org/10.1053/j.ajkd.2003.10.037

    Article  CAS  PubMed  Google Scholar 

  29. Greenberg H, Ye X, Wilson D, Htoo AK, Hendersen T, Liu SF (2006) Chronic intermittent hypoxia activates nuclear factor-kappaB in cardiovascular tissues in vivo. Biochem Biophys Res Commun 343(2):591–596. https://doi.org/10.1016/j.bbrc.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  30. Cheng HS, Njock MS, Khyzha N, Dang LT, Fish JE (2014) Noncoding RNAs regulate NF-kappaB signaling to modulate blood vessel inflammation. Front Genet 5:422. https://doi.org/10.3389/fgene.2014.00422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yamauchi M, Kimura H (2008) Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications. Antioxid Redox Signal 10(4):755–768. https://doi.org/10.1089/ars.2007.1946

    Article  CAS  PubMed  Google Scholar 

  32. Peres BU, Allen AJH, Kendzerska T, Shah A, Fox N, Laher I, Almeida F, Jen R, Sandford AJ, van Eeden SF, Ayas NT (2020) Obstructive sleep apnea severity, body mass index, and circulating levels of cellular adhesion molecules. Lung 198(6):939–945. https://doi.org/10.1007/s00408-020-00401-x

    Article  CAS  PubMed  Google Scholar 

  33. BaHammam AS, Alassiri SS, Al-Adab AH, Alsadhan IM, Altheyab AM, Alrayes AH, Alkhawajah MM, Olaish AH (2015) Long-term compliance with continuous positive airway pressure in Saudi patients with obstructive sleep apnea. A prospective cohort study. Saudi Med J 36(8):911–919. https://doi.org/10.15537/smj.2015.8.11716

  34. Bui TM, Wiesolek HL, Sumagin R (2020) ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol 108(3):787–799. https://doi.org/10.1002/JLB.2MR0220-549R

    Article  CAS  PubMed  Google Scholar 

  35. Amalakuhan B, Habib SA, Mangat M, Reyes LF, Rodriguez AH, Hinojosa CA, Soni NJ, Gilley RP, Bustamante CA, Anzueto A, Levine SM, Peters JI, Aliberti S, Sibila O, Chalmers JD, Torres A, Waterer GW, Martin-Loeches I, Bordon J, Blanquer J, Sanz F, Marcos PJ, Rello J, Ramirez J, Sole-Violan J, Luna CM, Feldman C, Witzenrath M, Wunderink RG, Stolz D, Wiemken TL, Shindo Y, Dela Cruz CS, Orihuela CJ, Restrepo MI (2016) Endothelial adhesion molecules and multiple organ failure in patients with severe sepsis. Cytokine 88:267–273. https://doi.org/10.1016/j.cyto.2016.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pankow JS, Decker PA, Berardi C, Hanson NQ, Sale M, Tang W, Kanaya AM, Larson NB, Tsai MY, Wassel CL, Bielinski SJ (2016) Circulating cellular adhesion molecules and risk of diabetes: the multi-ethnic study of atherosclerosis (MESA). Diabet Med 33(7):985–991. https://doi.org/10.1111/dme.13108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Chinese National Natural Science Foundation (Grant Number: 81670080).

Author information

Authors and Affiliations

Authors

Contributions

DT and MXL contributed to study concept and design and provided supervision. MXL contributed to revision and submission of the manuscript. ZST, JYX, and JK contributed to literature search. HYS and ZZM contributed to data extractions. ZST and JYX contributed to data analysis and drafted the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Dan Tong or Mingxian Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval and Consent to Participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Xiao, J., Kang, J. et al. Effects of Continuous Positive Airway Pressure on Cell Adhesion Molecules in Patients with Obstructive Sleep Apnea: A Meta-Analysis. Lung 199, 639–651 (2021). https://doi.org/10.1007/s00408-021-00487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-021-00487-x

Keywords

Navigation