Skip to main content
Log in

Overactivated contextual visual perception and response to a single dose of methylphenidate in children with ADHD

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The pathogenesis of overactivated visual perception in attention-deficit hyperactivity disorder (ADHD) remains unclear, which is interpreted as a cognitive compensation. The existing studies have proposed that perceptual abnormalities in neurodevelopmental disorders are associated with dysfunction of the contextual knowledge system, which influences the development and formation of perception. We hypothesized that alterations in contextual states may also be responsible for inducing perceptual abnormalities in ADHD. Therefore, the present study evaluated the characteristics of pre-stimulus alpha and its response to a single dose of methylphenidate (MPH). A total of 135 Chinese children participated in the first study, including 70 children with ADHD (age = 10.61 ± 1.93 years, female = 17) and 65 age- and sex-matched control children (age = 10.73 ± 1.93 years, female = 20). The second clinical trial included 19 Chinese children with ADHD (age = 11.85 ± 1.72 years, female = 4), with an identical visual spatial search task. Pre-stimulus alpha oscillations and P1 activity were significantly greater in children with ADHD than in the controls. Overactivated pre-stimulus alpha positively predicted P1. Both pre-stimulus alpha and P1 overactivation have beneficial effects on cognitive performance in children with ADHD. No intervening effect of a single dose of MPH on the compensatory activation of pre-stimulus alpha and P1 were observed. Our findings extended the perceptual activation to the contextual knowledge system, suggesting that compensatory perception in children with ADHD is more likely to be a top-down regulated cognitive operational process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Raw data cannot be shared due to ethics and privacy protection, and it is also a part of an ongoing study.

References

  1. Faraone SV, Asherson P, Banaschewski T et al (2015) Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 1:15020. https://doi.org/10.1038/nrdp.2015.20

    Article  PubMed  Google Scholar 

  2. Fuermaier ABM, Fricke JA, de Vries SM et al (2019) Neuropsychological assessment of adults with ADHD: a Delphi consensus study. Appl Neuropsychol Adult 26:340–354. https://doi.org/10.1080/23279095.2018.1429441

    Article  PubMed  Google Scholar 

  3. Thapar A, Cooper M, Eyre O, Langley K (2013) Practitioner review: What have we learnt about the causes of ADHD? J Child Psychol Psychiatry 54:3–16. https://doi.org/10.1111/j.1469-7610.2012.02611.x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anttila V, Bulik-Sullivan B, Finucane HK et al (2018) Analysis of shared heritability in common disorders of the brain. Science 360:eaap8757. https://doi.org/10.1126/science.aap8757

    Article  CAS  PubMed  Google Scholar 

  5. Fuermaier ABM, Hüpen P, De Vries SM et al (2018) Perception in attention deficit hyperactivity disorder. Attention Deficit Hyperactivity Disorders 10:21–47. https://doi.org/10.1007/s12402-017-0230-0

    Article  PubMed  Google Scholar 

  6. Kim S, Banaschewski T, Tannock R (2015) Color vision in attention-deficit/hyperactivity disorder: A pilot visual evoked potential study. J Optom 8:116–130. https://doi.org/10.1016/j.optom.2014.10.002

    Article  PubMed  Google Scholar 

  7. Cortese S, Kelly C, Chabernaud C et al (2012) Toward systems neuroscience of ADHD: A meta-analysis of 55 fMRI studies. Am J Psychiatry 169:1038–1055. https://doi.org/10.1176/appi.ajp.2012.11101521

    Article  PubMed  Google Scholar 

  8. Vahid A, Bluschke A, Roessner V et al (2019) Deep learning based on event-related EEG differentiates children with ADHD from healthy controls. J Clin Med 8:1055. https://doi.org/10.3390/jcm8071055

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ma J, Lei D, Jin X et al (2012) Compensatory brain activation in children with attention deficit/hyperactivity disorder during a simplified Go/No-go task. J Neural Transm 119:613–619. https://doi.org/10.1007/s00702-011-0744-0

    Article  PubMed  Google Scholar 

  10. Fassbender C, Schweitzer JB (2006) Is there evidence for neural compensation in attention deficit hyperactivity disorder? A review of the functional neuroimaging literature. Clin Psychol Rev 26:445–465. https://doi.org/10.1016/j.cpr.2006.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schweitzer JB, Faber TL, Grafton ST et al (2000) Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. Am J Psychiatry 157:278–280. https://doi.org/10.1176/appi.ajp.157.2.278

    Article  CAS  PubMed  Google Scholar 

  12. Robertson CE, Baron-Cohen S (2017) Sensory perception in autism. Nat Rev Neurosci 18:671–684. https://doi.org/10.1038/nrn.2017.112

    Article  CAS  PubMed  Google Scholar 

  13. King DJ, Hodgekins J, Chouinard PA et al (2017) A review of abnormalities in the perception of visual illusions in schizophrenia. Psychon Bull Rev 24:734–751. https://doi.org/10.3758/s13423-016-1168-5

    Article  PubMed  Google Scholar 

  14. Van Leeuwen TM, Sauer A, Jurjut AM et al (2021) Perceptual gains and losses in synesthesia and schizophrenia. Schizophr Bull 47:722–730. https://doi.org/10.1093/schbul/sbaa162

    Article  PubMed  Google Scholar 

  15. Chung S, Son JW (2020) Visual perception in autism spectrum disorder: a review of neuroimaging studies. J Korean Acad Child Adolesc Psychiatry 31:105–120. https://doi.org/10.5765/jkacap.200018

    Article  Google Scholar 

  16. Canu D, Ioannou C, Müller K et al (2021) Visual search in neurodevelopmental disorders: evidence towards a continuum of impairment. Eur Child Adolesc Psychiatry. https://doi.org/10.1007/s00787-021-01756-z

    Article  PubMed  PubMed Central  Google Scholar 

  17. de Lange FP, Heilbron M, Kok P (2018) How Do Expectations Shape Perception? Trends Cogn Sci 22:764–779. https://doi.org/10.1016/j.tics.2018.06.002

    Article  PubMed  Google Scholar 

  18. Friston K (2005) A theory of cortical responses. Philos Trans R Soc B: Biol Sci 360:815–836. https://doi.org/10.1098/rstb.2005.1622

    Article  Google Scholar 

  19. Abernethy B, Gill DP, Parks SL, Packer ST (2001) Expertise and the perception of kinematic and situational probability information. Perception 30:233–252. https://doi.org/10.1068/p2872

    Article  CAS  PubMed  Google Scholar 

  20. Wiley RW, Wilson C, Rapp B (2016) The effects of alphabet and expertise on letter perception. J Exp Psychol Hum Percept Perform 42:1186–1203. https://doi.org/10.1037/xhp0000213

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zanesco J, Tipura E, Posada A et al (2019) Seeing is believing: Early perceptual brain processes are modified by social feedback. Soc Neurosci 14:519–529. https://doi.org/10.1080/17470919.2018.1511470

    Article  PubMed  Google Scholar 

  22. Iemi L, Chaumon M, Crouzet SM, Busch NA (2017) Spontaneous neural oscillations bias perception by modulating baseline excitability. J Neurosci 37:807–819. https://doi.org/10.1523/JNEUROSCI.1432-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Michail G, Toran Jenner L, Keil J (2021) Prestimulus alpha power but not phase influences visual discrimination of long-duration visual stimuli. Eur J Neurosci 55:15169. https://doi.org/10.1111/ejn.15169

    Article  CAS  Google Scholar 

  24. Mayer A, Schwiedrzik CM, Wibral M et al (2016) Expecting to see a letter: Alpha oscillations as carriers of top-down sensory predictions. Cereb Cortex 26:3146–3160. https://doi.org/10.1093/cercor/bhv146

    Article  PubMed  Google Scholar 

  25. Abeles IY, Gomez-Ramirez M (2014) Impairments in background and event-related alpha-band oscillatory activity in patients with schizophrenia. PLoS ONE 9:e91720. https://doi.org/10.1371/journal.pone.0091720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ghanizadeh A (2010) Visual fields in children with attention-deficit/hyperactivity disorder before and after treatment with stimulant. Acta Ophthalmol. https://doi.org/10.1111/j.1755-3768.2008.01189.x

    Article  PubMed  Google Scholar 

  27. Martin L, Aring E, Landgren M et al (2008) Visual fields in children with attention-deficit/hyperactivity disorder before and after treatment with stimulants. Acta Ophthalmol 86:259–264. https://doi.org/10.1111/j.1755-3768.2008.01189.x

    Article  CAS  PubMed  Google Scholar 

  28. Luo X, Guo J, Li D et al (2021) Atypical developmental trajectories of early perception among school-age children with attention deficit hyperactivity disorder during a visual search task. Child Dev 92:e1186–e1197. https://doi.org/10.1111/cdev.13604

    Article  PubMed  Google Scholar 

  29. Frazier TW, Demaree HA, Youngstrom EA (2004) Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder. Neuropsychology 18:543–555. https://doi.org/10.1037/0894-4105.18.3.543

    Article  PubMed  Google Scholar 

  30. Dennis M, Francis DJ, Cirino PT et al (2009) Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J Int Neuropsychol Soc 15:331–343. https://doi.org/10.1017/S1355617709090481

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang E, Sun L, Sun M et al (2016) Attentional selection and suppression in children with attention-deficit/hyperactivity disorder. Biol Psychiatry: Cogn Neurosci Neuroimaging 1:372–380. https://doi.org/10.1016/j.bpsc.2016.01.004

    Article  PubMed  Google Scholar 

  32. Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  33. Ahmadi M, QuianQuiroga R (2013) Automatic denoising of single-trial evoked potentials. Neuroimage 66:672–680. https://doi.org/10.1016/j.neuroimage.2012.10.062

    Article  PubMed  Google Scholar 

  34. Samaha J, Boutonnet B, Postle BR, Lupyan G (2018) Effects of meaningfulness on perception: Alpha-band oscillations carry perceptual expectations and influence early visual responses. Sci Rep 8:6606. https://doi.org/10.1038/s41598-018-25093-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Samaha J, Iemi L, Postle BR (2017) Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. Conscious Cogn 54:47–55. https://doi.org/10.1016/j.concog.2017.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Iemi L, Busch NA, Laudini A, et al. (2019) Multiple mechanisms link prestimulus neural oscillations to sensory responses. eLife doi:https://doi.org/10.7554/elife.43620

  37. Eliasson A-C, Rösblad B, Forssberg H (2007) Disturbances in programming goal-directed arm movements in children with ADHD. Dev Med Child Neurol 46:19–27. https://doi.org/10.1111/j.1469-8749.2004.tb00429.x

    Article  Google Scholar 

  38. Aasen IE, Øgrim G, Kropotov J, Brunner JF (2018) Methylphenidate selectively modulates one sub-component of the no-go P3 in pediatric ADHD medication responders. Biol Psychol 134:30–38. https://doi.org/10.1016/j.biopsycho.2018.02.011

    Article  PubMed  Google Scholar 

  39. Faraone SV (2018) The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev 87:255–270. https://doi.org/10.1016/j.neubiorev.2018.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tremblay S, Pieper F, Sachs A, et al. (2019) The effects of methylphenidate (Ritalin) on the neurophysiology of the monkey caudal prefrontal cortex. eNeuro doi:https://doi.org/10.1523/ENEURO.0371-18.2018

  41. Shaw P, Sharp WS, Morrison M et al (2009) Psychostimulant treatment and the developing cortex in attention deficit hyperactivity disorder. Am J Psychiatry 166:58–63. https://doi.org/10.1176/appi.ajp.2008.08050781

    Article  PubMed  Google Scholar 

  42. Gordon B, Allen EE, Trombley PQ (1988) The role of norepinephrine in plasticity of visual cortex. Prog Neurobiol 30:171–191. https://doi.org/10.1016/0301-0082(88)90005-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Sciences Foundation of China (L.S., 81971284, 81771479; Y.S., 31871099; L.L.,81873802), Key Scientific Research Projects of Capital Health Development (L.S. 2020-1-4111), Beijing Municipal Science and Technology Program (L.S., Z171100001017089), Beijing Brain Initiative of Beijing Municipal Science and Technology Commission (Y.S., Z181100001518003), and National Defense Basic Scientific Research Program of China (Y.S., 2018110B011). The authors wish to thank the children and patients for their participation. We also thank Changming Wang for the comments and contributions to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Song or Li Sun.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1301 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Dang, C., Guo, J. et al. Overactivated contextual visual perception and response to a single dose of methylphenidate in children with ADHD. Eur Arch Psychiatry Clin Neurosci 274, 35–44 (2024). https://doi.org/10.1007/s00406-023-01559-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-023-01559-0

Keywords

Navigation