Skip to main content

Advertisement

Log in

Microglial depletion and abnormalities in gut microbiota composition and short-chain fatty acids in mice after repeated administration of colony stimulating factor 1 receptor inhibitor PLX5622

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

PLX5622, a brain-penetrant highly specific inhibitor of the colony-stimulating factor 1 receptor (CSF1R), is used to eliminate microglia in the brain. Considering the role of microglia and gut microbiota in the brain homeostasis, this study was undertaken to investigate whether repeated intragastric administration of PLX5622 (65 mg/kg/day for consecutive 7 days) could affect the composition of gut microbiota and the concentration of short-chain fatty acids (SCFAs) in fresh feces of adult mice. Repeated administration of PLX5622 caused significant reductions of the expression of genes and proteins for microglial markers in the prefrontal cortex (PFC) and hippocampus compared to control mice although the elimination of brain’s microglia was partial. There was a significant alteration in the β-diversity of intestine microbiota in the PLX5622-treated group. Linear discriminant analysis effect size identified eight significant enriched bacteria as microbial markers for PLX5622-treated group. Repeated administration of PLX5622 affected the relative abundance of several bacteria at the genus and species levels. Furthermore, repeated administration of PLX5622 caused a significant change in lactic acid compared to control group. Interestingly, we found significant correlations between microglial markers in the brain and the relative abundance of several bacteria, suggesting microbiome–microglia crosstalk through the brain–gut axis. These data demonstrate that repeated administration of PLX5622 leads to an abnormal composition of the gut microbiota and lactic acid in adult mice. Therefore, abnormalities in the composition of gut microbiota after repeated treatment of PLX5622 should be considered for behavioral and biological functions in animals treated with CSF1R inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Glezer I, Simard AR, Rivest S (2007) Neuroprotective role of the innate immune system by microglia. Neuroscience 147:867–883. https://doi.org/10.1016/j.neuroscience.2007.02.055

    Article  CAS  PubMed  Google Scholar 

  2. Gogoleva VS, Drutskaya MS, Atretkhany KS (2019) The role of microglia in the homeostasis of the central nervous system and neuroinflammation. Mol Biol (Mosk) 53:790–798. https://doi.org/10.1134/S0026898419050057

    Article  CAS  Google Scholar 

  3. Rosin JM, Vora SR, Kurrasch DM (2018) Depletion of embryonic microglia using the CSF1R inhibitor PLX5622 has adverse sex-specific effects on mice, including accelerated weight gain, hyperactivity and anxiolytic-like behaviour. Brain Behav Immun 73:682–697. https://doi.org/10.1016/j.bbi.2018.07.023

    Article  CAS  PubMed  Google Scholar 

  4. Spangenberg EE, Green KN (2017) Inflammation in Alzheimer’s disease: lessons learned from microglia-depletion models. Brain Behav Immun 61:1–11. https://doi.org/10.1016/j.bbi.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  5. Wolf SA, Boddeke HW, Kettenmann H (2017) Microglia in physiology and disease. Annu Rev Physiol 79:619–643. https://doi.org/10.1146/annurev-physiol-022516-034406

    Article  CAS  PubMed  Google Scholar 

  6. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Brück W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553. https://doi.org/10.1038/nn2015

    Article  CAS  PubMed  Google Scholar 

  8. Chitu V, Gokhan Ş, Nandi S, Mehler MF, Stanley ER (2016) Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci 39:378–393. https://doi.org/10.1016/j.tins.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, Chen K, Zhu L, Pollard JW (2006) Conditional deletion of the colony stimulating factor-1 receptor (c-fms proto-oncogene) in mice. Genesis 44:328–335. https://doi.org/10.1002/dvg.20219

    Article  CAS  PubMed  Google Scholar 

  10. Patel S, Player MR (2009) Colony-stimulating factor-1 receptor inhibitors for the treatment of cancer and inflammatory disease. Curr Top Med Chem 9:599–610. https://doi.org/10.2174/156802609789007327

    Article  CAS  PubMed  Google Scholar 

  11. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW (2011) Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS ONE 6:e26317. https://doi.org/10.1371/journal.pone.0026317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397. https://doi.org/10.1016/j.neuron.2014.02.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee S, Shi XQ, Fan A, West B, Zhang J (2018) Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain. Mol Pain 14:1744806918764979. https://doi.org/10.1177/1744806918764979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Spangenberg E, Severson PL, Hohsfield LA, Crapser J, Zhang J, Burton EA, Zhang Y, Spevak W, Lin J, Phan NY, Habets G, Rymar A, Tsang G, Walters J, Nespi M, Singh P, Broome S, Ibrahim P, Zhang C, Bollag G, West BL, Green KN (2019) Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer’s disease model. Nat Commun 10:3758. https://doi.org/10.1038/s41467-019-11674-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cavnar MJ, Zeng S, Kim TS, Sorenson EC, Ocuin LM, Balachandran VP, Seifert AM, Greer JB, Popow R, Crawley MH, Cohen NA, Green BL, Rossi F, Besmer P, Antonescu CR, DeMatteo RP (2013) KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med 210:2873–2886. https://doi.org/10.1084/jem.20130875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE (2012) Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 18:519–527. https://doi.org/10.2119/molmed.2011.00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dagher NN, Najafi AR, Kayala KM, Elmore MR, White TE, Medeiros R, West BL, Green KN (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:139. https://doi.org/10.1186/s12974-015-0366-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Green KN, Crapser JD, Hohsfield LA (2020) To kill a microglia: a case for CSF1R inhibitors. Trends Immunol 41:771–784. https://doi.org/10.1016/j.it.2020.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Janova H, Arinrad S, Balmuth E, Mitjans M, Hertel J, Habes M, Bittner RA, Pan H, Goebbels S, Begemann M, Gerwig UC, Langner S, Werner HB, Kittel-Schneider S, Homuth G, Davatzikos C, Völzke H, West BL, Reif A, Grabe HJ, Boretius S, Ehrenreich H, Nave KA (2018) Microglia ablation alleviates myelin-associated catatonic signs in mice. J Clin Invest 128:734–745. https://doi.org/10.1172/JCI97032

    Article  PubMed  Google Scholar 

  20. Waltl I, Käufer C, Gerhauser I, Chhatbar C, Ghita L, Kalinke U, Löscher W (2018) Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage. Brain Behav Immun 74:186–204. https://doi.org/10.1016/j.bbi.2018.09.006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang K, Yang C, Chang L, Sakamoto A, Suzuki T, Fujita Y, Qu Y, Wang S, Pu Y, Tan Y, Wang X, Ishima T, Shirayama Y, Hatano M, Tanaka KF, Hashimoto K (2020) Essential role of microglial transforming growth factor-β1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-β1. Transl Psychiatry 10:32. https://doi.org/10.1038/s41398-020-0733-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O’Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG (2019) The microbiota-gut-brain axis. Physiol Rev 99:1877–2013. https://doi.org/10.1152/physrev.00018.2018

    Article  CAS  PubMed  Google Scholar 

  23. Cussotto S, Sandhu KV, Dinan TG, Cryan JF (2018) The neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front Neuroendocrinol 51:80–101. https://doi.org/10.1016/j.yfrne.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  24. Dinan TG, Cryan JF (2017) Brain-gut-microbiota axis and mental health. Psychosom Med 79:920–926. https://doi.org/10.1097/PSY.0000000000000519

    Article  PubMed  Google Scholar 

  25. Fung TC, Olson CA, Hsiao EY (2017) Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci 20:145–155. https://doi.org/10.1038/nn.4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Long-Smith C, O’Riordan KJ, Clarke G, Stanton C, Dinan TG, Cryan JF (2020) Microbiota-gut-brain axis: new therapeutic opportunities. Annu Rev Pharmacol Toxicol 60:477–502. https://doi.org/10.1146/annurev-pharmtox-010919-023628

    Article  CAS  PubMed  Google Scholar 

  27. Wei Y, Chang L, Hashimoto K (2021) Molecular mechanisms underlying the antidepressant actions of arketamine: beyond the NMDA receptor. Mol Psychiatry. https://doi.org/10.1038/s41380-021-01121-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jianguo L, Xueyang J, Cui W, Changxin W, Xuemei Q (2019) Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress. Transl Psychiatry 9:40. https://doi.org/10.1038/s41398-019-0391-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Szyszkowicz JK, Wong A, Anisman H, Merali Z, Audet MC (2017) Implications of the gut microbiota in vulnerability to the social avoidance effects of chronic social defeat in male mice. Brain Behav Immun 66:45–55. https://doi.org/10.1016/j.bbi.2017.06.009

    Article  PubMed  Google Scholar 

  30. Wang S, Ishima T, Zhang J, Qu Y, Chang L, Pu Y, Fujita Y, Tan Y, Wang X, Hashimoto K (2020) Ingestion of Lactobacillus intestinalis and Lactobacillus reuteri causes depression- and anhedonia-like phenotypes in antibiotic-treated mice via the vagus nerve. J Neuroinflammation 17:241. https://doi.org/10.1186/s12974-020-01916-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang C, Fang X, Zhan G, Huang N, Li S, Bi J, Jiang R, Yang L, Miao L, Zhu B, Luo A, Hashimoto K (2019) Key role of gut microbiota in anhedonia-like phenotype in rodents with neuropathic pain. Transl Psychiatry 9:57. https://doi.org/10.1038/s41398-019-0379-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang C, Fujita Y, Ren Q, Ma M, Dong C, Hashimoto K (2017) Bifidobacterium in the gut microbiota confer resilience to chronic social defeat stress in mice. Sci Rep 7:45942. https://doi.org/10.1038/srep45942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Ma L, Chang L, Pu Y, Qu Y, Hashimoto K (2020) A key role of the subdiaphragmatic vagus nerve in the depression-like phenotype and abnormal composition of gut microbiota in mice after lipopolysaccharide administration. Transl Psychiatry 10:186. https://doi.org/10.1038/s41398-020-00878-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang K, Fujita Y, Chang L, Qu Y, Pu Y, Wang S, Shirayama Y, Hashimoto K (2019) Abnormal composition of gut microbiota is associated with resilience versus susceptibility to inescapable electric stress. Transl Psychiatry 9:231. https://doi.org/10.1038/s41398-019-0571-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K (2019) The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 16:461–478. https://doi.org/10.1038/s41575-019-0157-3

    Article  PubMed  Google Scholar 

  36. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  37. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200. https://doi.org/10.1080/19490976.2015.1134082

    Article  PubMed  PubMed Central  Google Scholar 

  38. Abdel-Haq R, Schlachetzki J, Glass CK, Mazmanian SK (2019) Microbiome-microglia connections via the gut–brain axis. J Exp Med 216:41–59. https://doi.org/10.1084/jem.20180794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF (2019) Impact of microbiota on central nervous system and neurological diseases: the gut–brain axis. J Neuroinflammation 16:53. https://doi.org/10.1186/s12974-019-1434-3

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang Y, Wang Z, Wang Y, Li F, Jia J, Song X, Qin S, Wang R, Jin F, Kitazato K, Wang Y (2018) The gut–microglia connection: implications for central nervous system diseases. Front Immunol 9:2325. https://doi.org/10.3389/fimmu.2018.02325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH, Rüttinger D (2017) Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer 5:53. https://doi.org/10.1186/s40425-017-0257-y

    Article  PubMed  PubMed Central  Google Scholar 

  42. Denny WA, Flanagan JU (2021) Small-molecule CSF1R kinase inhibitors; review of patents 2015-present. Expert Opin Ther Pat 31:107–117. https://doi.org/10.1080/13543776.2021.1839414

    Article  CAS  PubMed  Google Scholar 

  43. Wang S, Qu Y, Chang L, Pu Y, Zhang K, Hashimoto K (2020) Antibiotic-induced microbiome depletion is associated with resilience in mice after chronic social defeat stress. J Affect Disord 260:448–457. https://doi.org/10.1016/j.jad.2019.09.064

    Article  CAS  PubMed  Google Scholar 

  44. Pu Y, Tan Y, Qu Y, Chang L, Wang S, Wei Y, Wang X, Hashimoto K (2021) A role of the subdiaphragmatic vagus nerve in depression-like phenotypes in mice after fecal microbiota transplantation from Chrna7 knock-out mice with depression-like phenotypes. Brain Behav Immun 94:318–326. https://doi.org/10.1016/j.bbi.2020.12.032

    Article  CAS  PubMed  Google Scholar 

  45. Qu Y, Zhang K, Pu Y, Chang L, Wang S, Tan Y, Wang X, Zhang J, Ohnishi T, Yoshikawa T, Hashimoto K (2020) Betaine supplementation is associated with the resilience in mice after chronic social defeat stress: a role of brain–gut–microbiota axis. J Affect Disord 272:66–76. https://doi.org/10.1016/j.jad.2020.03.095

    Article  CAS  PubMed  Google Scholar 

  46. Shinno-Hashimoto H, Hashimoto Y, Wei Y, Chang L, Fujita Y, Ishima T, Matsue H, Hashimoto K (2021) Abnormal composition of microbiota in the gut and skin of imiquimod-treated mice. Sci Rep 11:11265. https://doi.org/10.1038/s41598-021-90480-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang S, Ishima T, Qu Y, Shan J, Chang L, Wei Y, Zhang J, Pu Y, Fujita Y, Tan Y, Wang X, Ma L, Wan X, Hammock BD, Hashimoto K (2021) Ingestion of Faecalibaculum rodentium causes depression-like phenotypes in resilient Ephx2 knock-out mice: a role of brain-gut-microbiota axis via the subdiaphragmatic vagus nerve. J Affect Disord 292:565–573. https://doi.org/10.1016/j.jad.2021.06.006

    Article  CAS  PubMed  Google Scholar 

  48. Pu Y, Yang J, Chang L, Qu Y, Wang S, Zhang K, Xiong Z, Zhang J, Tan Y, Wang X, Fujita Y, Ishima T, Wang D, Hwang SH, Hammock BD, Hashimoto K (2020) Maternal glyphosate exposure causes autism-like behaviors in offspring through increased expression of soluble epoxide hydrolase. Proc Natl Acad Sci U S A 117:11753–11759. https://doi.org/10.1073/pnas.1922287117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim SW, Suda W, Kim S, Oshima K, Fukuda S, Ohno H, Morita H, Hattori M (2013) Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res 20:241–253. https://doi.org/10.1093/dnares/dst006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shibagaki N, Suda W, Clavaud C, Bastien P, Takayasu L, Iioka E, Kurokawa R, Yamashita N, Hattori Y, Shindo C, Breton L, Hattori M (2017) Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci Rep 7:10567. https://doi.org/10.1038/s41598-017-10834-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  52. Priller J, Prinz M (2019) Targeting microglia in brain disorders. Science 365:32–33. https://doi.org/10.1126/science.aau9100

    Article  CAS  PubMed  Google Scholar 

  53. Spittau B, Dokalis N, Prinz M (2020) The role of TGF-β signaling in microglia maturation and activation. Trends Immunol 41:836–848. https://doi.org/10.1016/j.it.2020.07.003

    Article  CAS  PubMed  Google Scholar 

  54. Zöller T, Schneider A, Kleimeyer C, Masuda T, Potru PS, Pfeifer D, Blank T, Prinz M, Spittau B (2018) Silencing of TGFβ signalling in microglia results in impaired homeostasis. Nat Commun 9:4011. https://doi.org/10.1038/s41467-018-06224-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Horn N (1987) Clostridium disporicum sp. nov., a Saccharolytic species able to form two spores per cell, isolated from a rat cecum. Int J Syst Bacteriol 37:398–401. https://doi.org/10.1099/00207713-37-4-398

    Article  Google Scholar 

  56. McBride JA, Sterkel AK, Rehrauer WM, Smith JA (2017) First described case of prosthetic joint infection with Clostridium disporicum. Anaerobe 48:56–58. https://doi.org/10.1016/j.anaerobe.2017.06.022

    Article  PubMed  Google Scholar 

  57. Clavel T, Duck W, Charrier C, Wenning M, Elson C, Haller D (2010) Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus. Int J Syst Evol Microbiol 60:1527–1531. https://doi.org/10.1099/ijs.0.015016-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yanagibashi T, Hosono A, Oyama A, Tsuda M, Suzuki A, Hachimura S, Takahashi Y, Momose Y, Itoh K, Hirayama K, Takahashi K, Kaminogawa S (2013) IgA production in the large intestine is modulated by a different mechanism than in the small intestine: Bacteroides acidifaciens promotes IgA production in the large intestine by inducing germinal center formation and increasing the number of IgA+ B cells. Immunobiology 218:645–651. https://doi.org/10.1016/j.imbio.2012.07.033

    Article  CAS  PubMed  Google Scholar 

  59. Yang JY, Lee YS, Kim Y, Lee SH, Ryu S, Fukuda S, Hase K, Yang CS, Lim HS, Kim MS, Kim HM, Ahn SH, Kwon BE, Ko HJ, Kweon MN (2017) Gut commensal Bacteroides acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immuno 10:104–116. https://doi.org/10.1038/mi.2016.42

    Article  CAS  Google Scholar 

  60. Wu L, Yan Q, Chen F, Cao C, Wang S (2021) Bupleuri radix extract ameliorates impaired lipid metabolism in high-fat diet-induced obese mice via gut microbia-mediated regulation of FGF21 signaling pathway. Biomed Pharmacother 135:111187. https://doi.org/10.1016/j.biopha.2020.111187

    Article  CAS  PubMed  Google Scholar 

  61. Singh P, Rawat A, Alwakeel M, Sharif E, Al Khodor S (2020) The potential role of vitamin D supplementation as a gut microbiota modifier in healthy individuals. Sci Rep 10:21641. https://doi.org/10.1038/s41598-020-77806-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kutsyr O, Maestre-Carballa L, Lluesma-Gomez M, Martinez-Garcia M, Cuenca N, Lax P (2021) Retinitis pigmentosa is associated with shifts in the gut microbiome. Sci Rep 11:6692. https://doi.org/10.1038/s41598-021-86052-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fouladi F, Bailey MJ, Patterson WB, Sioda M, Blakley IC, Fodor AA, Jones RB, Chen Z, Kim JS, Lurmann F, Martino C, Knight R, Gilliland FD, Alderete TL (2020) Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. Environ Int 138:105604. https://doi.org/10.1016/j.envint.2020.105604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Duan C, Huang L, Zhang C, Zhang L, Xia X, Zhong Z, Wang B, Wang Y, Man Hoi MP, Ding W, Yang Y (2021) Gut commensal-derived butyrate reverses obesity-induced social deficits and anxiety-like behaviors via regulation of microglial homeostasis. Eur J Pharmacol 908:174338. https://doi.org/10.1016/j.ejphar.2021.174338

    Article  CAS  PubMed  Google Scholar 

  65. Clayton K, Delpech JC, Herron S, Iwahara N, Ericsson M, Saito T, Saido TC, Ikezu S, Ikezu T (2021) Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol Neurodegener 16:18. https://doi.org/10.1186/s13024-021-00440-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschalis EI (2020) CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages. Proc Natl Acad Sci U S A 117:23336–23338. https://doi.org/10.1073/pnas.1922788117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by Japan Society for the Promotion of Science (JSPS) (to K.H., 21H00184 and 21H02846).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hashimoto.

Ethics declarations

Conflict of interest

The authors report no biomedical financial interests or potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ishima, T., Wan, X. et al. Microglial depletion and abnormalities in gut microbiota composition and short-chain fatty acids in mice after repeated administration of colony stimulating factor 1 receptor inhibitor PLX5622. Eur Arch Psychiatry Clin Neurosci 272, 483–495 (2022). https://doi.org/10.1007/s00406-021-01325-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-021-01325-0

Keywords

Navigation