Skip to main content
Log in

Family-based study of markers at the 5′-flanking region of the human dopamine transporter gene reveals potential association with schizophrenic psychoses

  • ORIGINAL PAPER
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The dopamine hypothesis of schizophrenia proposes an inherited or acquired presynaptic hyperactivity of dopaminergic neurons. The human dopamine transporter gene (hSLC6A3; hDAT) represents one major mechanism for the termination of dopaminergic neurotransmission. This study examines the degree of genetic association of the 5′-untranslated region (5′-UTR) of the hSLC6A3 to schizophrenia in a family-based association design. Five single nucleotide polymorphisms (SNPs) derived by a previous systematic mutation scan ∼1.2 kb of the 5′-UTR of the hSLC6A3 locus were genotyped for transmission disequilibrium between 82 index cases (56 males) with schizophrenia and their biological parents. We observed no preferential transmission of alleles from heterozygous parents to affected offspring. Five estimated haplotypes accounted for a frequency of 90% in the index cases, and were identical in cases and non-transmitted parental control haplotypes. Distinct five-locus-genotypes accumulated in schizophrenia compared to parental controls at P-value 0.0038 with odds-ratio of 2.02 (95% CI 0.99–4.14). In conclusion, our present findings support the genetic involvement of distinct hSLC6A3 genotypes in schizophrenia. We propose replication in extended samples and examination of the functional relevance of the associated genotypes on human dopamine transporter expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1:179–186

    Article  PubMed  CAS  Google Scholar 

  2. Laakso A, Vilkman H, Alakare B, Haaparanta M, Bergman J, Solin O, Peurasaari J, Rakkolainen V, Syvalahti E, Hietala J (2000) Striatal dopamine transporter binding in neuroleptic-naive patients with schizophrenia studied with positron emission tomography. Am J Psychiatry 157:269–271

    Article  PubMed  CAS  Google Scholar 

  3. Semwal P, Prasad S, Bhatia T, Deshpande SN, Wood J, Nimgaonkar VL, Thelma BK (2001) Family-based association studies of monoaminergic gene polymorphisms among North Indians with schizophrenia. Mol Psychiatry 6:220–224

    Article  PubMed  CAS  Google Scholar 

  4. Bannon MJ, Michelhaugh SK, Wang J, Sacchetti (2001) The human dopamine transporter gene: gene organization, transcriptional regulation, and potential involvelment in neuropsychiatric disorders. Eur Neuropsychopharmacol 11:449–455

    Article  PubMed  CAS  Google Scholar 

  5. Uhl GR (2003) Dopamine transporter: Basic science and human variation of a key molecule for dopaminergic function, locomotion, and Parkinsonism. Mov Disorder 18 (Suppl. 7):71–80

    Article  Google Scholar 

  6. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Wang ZW, Jabs E (1992) Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR. Genomics 14:1104–1106

    Article  PubMed  CAS  Google Scholar 

  7. Silverman JM, Greenberg DA, Altstiel LD, Siever LJ, Mohs RC, Smith CJ, Zhou G, Hollander TE, Yang XP, Kedache M, Li G, Zaccario ML, Davis KL (1996) Evidence of a locus for schizophrenia and related disorders on the short arm of chromosome 5 in a large pedigree. Am J Med Genet 67:162–171

    Article  PubMed  CAS  Google Scholar 

  8. Cooper-Casey K, Mesen-Fainardi A, Galke-Rollins B, Llach M, Laprade B, Rodriguez C, Riondet S, Bertheau A, Byerley W (2005) Suggestive linkage of schizophrenia to 5p13 in Costa Rica. Mol Psychiatry doi: 10.1038/sj.mp.4001640

    Google Scholar 

  9. Crowe RR, Vieland V (1999) Report of the Chromosome 5 Workshop of the Sixth World Congress on Psychiatric Genetics. Am J Med Genet 88:229–232

    Article  PubMed  CAS  Google Scholar 

  10. Badner JA, Gershon ES (2002) Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 7:405–411

    Article  PubMed  CAS  Google Scholar 

  11. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, Brzustowicz LM, Kaufmann CA, Garver DL, Gurling HM, Lindholm E, Coon H, Moises HW, Byerley W, Shaw SH, Mesen A, Sherrington R, O’Neill FA, Walsh D, Kendler KS, Ekelund J, Paunio T, Lonnqvist J, Peltonen L, O’Donovan MC, Owen MJ, Wildenauer DB, Maier W, Nestadt G, Blouin JL, Antonarakis SE, Mowry BJ, Silverman JM, Crowe RR, Cloninger CR, Tsuang MT, Malaspina D, Harkavy-Friedman JM, Svrakic DM, Bassett AS, Holcomb J, Kalsi G, McQuillin A, Brynjolfson J, Sigmundsson T, Petursson H, Jazin E, Zoega T, Helgason T (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: Schizophrenia. Am J Hum Genet 73:34–48

    Article  PubMed  CAS  Google Scholar 

  12. Maier W, Minges J, Eckstein N, Brodski C, Albus M, Lerer B, Hallmayer J, Fimmers R, Ackenheil M, Ebstein RE, Borrmann M, Lichtermann D, Wildenauer DB (1996) Genetic relationship between dopamine transporter gene and schizophrenia: linkage and association. Schizophr Res 20:175–180

    Article  PubMed  CAS  Google Scholar 

  13. Georgieva L, Dimitrova A, Nikolov I, Koleva S, Tsvetkova R, Owen MJ, Toncheva D, Kirov G (2002) Dopamine transporter gene (DAT1) VNTR polymorphism in major psychiatric disorders: family-based association study in the Bulgarian population. Acta Psychiatr Scand 105:396–399

    Article  PubMed  CAS  Google Scholar 

  14. Schmitt GJE, Frodl T, Dresel S, la Fougère C, Bottlender R, Koutsouleris N, Hahn K, Möller HJ, Meisenzahl EM (2005) Striatal dopamine transporter availability is associated with the productive psychotic state in first episode, drug–naive schizophrenic patients. Eur Arch Psychiatry Clin Neurosci DOI: 10.1007/s00406–005–0618-2

    Google Scholar 

  15. Gamma F, Faraone SV, Glatt SJ, Yeh YC, Tsuang MT (2005) Meta-analysis shows schizophrenia is not associated with the 40-base-pair repeat polymorphism of the dopamine transporter gene. Schizophr Res 73:55–58

    Article  PubMed  CAS  Google Scholar 

  16. Jeong SH, Joo EJ, Ahn YM, Kim YS (2004) Association of dopamine transporter gene and schizophrenia in Korean population using multiple single nucleotide polymorphism markers. Progr Neuro-Psychopharmacology Biol Psychiatry 28:975–983

    Article  CAS  Google Scholar 

  17. Rubie C, Schmidt F, Knapp M, Sprandel J, Wiegand C, Meyer J, Jungkunz G, Riederer P, Stöber G (2001) The human dopamine transporter gene: the 5′-flanking region reveals five diallelic polymorphic sites in a Caucasian population sample. Neurosci Lett 297:125–128

    Article  PubMed  CAS  Google Scholar 

  18. Kawarai T, Kawakami H, Yamamura Y, Nakamura S (1997) Structure and organization of the gene encoding human dopamine transporter. Gene 195:11–18

    Article  PubMed  CAS  Google Scholar 

  19. Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  20. Becker T, Knapp M (2004) Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet Epidemiol 27:21–32

    Article  PubMed  Google Scholar 

  21. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium. The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–512

    PubMed  CAS  Google Scholar 

  22. Zhao H, Zhang S, Merikangas KR, Trixler M, Wildenauer DB, Sun F, Kidd KK (2000) Transmission/disequilibrium tests using multiple tightly linked markers. Am J Hum Genet 67:936–946

    Article  PubMed  CAS  Google Scholar 

  23. Kim JY, Jung IK, Han C, Cho SH, Kim L, Kim SH, Lee BH, Lee HJ, Kim YK (2005) Antipsychotics and dopamine transporter gene polymorphisms in delirium patients. Psychiatry Clin Neurosci 59:183–188

    Article  PubMed  CAS  Google Scholar 

  24. Knapp M (1999) A note on power approximations for the transmission/disequilibrium test. Am J Hum Genet 64:1177–1185

    PubMed  CAS  Google Scholar 

  25. Purper-Ouakil D, Wohl M, Mouren MC, Verpillat P, Ades J, Gorwood P (2005) Meta-analysis of family-based association studies between the dopamine transporter gene and attention deficit hyperactivity disorder. Psychiatr Genet 15:53–59

    Article  PubMed  CAS  Google Scholar 

  26. Khodayari N, Garshasbi M, Fadai F, Rahimi A, Hafizi L, Ebrahimi A, Najmabadi H, Ohadi M (2004) Association analysis of the dopamine transporter (DAT1) core promoter polymorphism-67T variant with schizophrenia. Am J Med Genet 129:10–12

    Article  CAS  Google Scholar 

  27. Greenwood TA, Kelsoe JR (2003) Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 82:511–519

    Article  PubMed  CAS  Google Scholar 

  28. Greenwood TA, Alexander M, Keck PE, McElroy S, Sadovnick AD, Remick RA, Kelsoe JR (2001) Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. Am J Med Genet 105:145–151

    Article  PubMed  CAS  Google Scholar 

  29. Greenwood TA, Alexander M, Keck PE, McElroy S, Sadovnick AD, Remick RA, Shaw SH, Kelsoe JR (2002) Segmental linkage disequilibrium within the dopamine transporter gene. Mol Psychiatry 7:165–173

    Article  PubMed  CAS  Google Scholar 

  30. Greenwood TA, Schork NJ, Eskin E, Kelsoe JR (2006) Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Mol Psychiatry 11:125–133

    Article  PubMed  CAS  Google Scholar 

  31. Vandenbergh DJ, Thompson MD, Cook EH, Bendahhou E, Nguyen T, Krasowski MD, Zarrabian D, Comings D, Sellers EM, Tyndale RF, George SR, O’Dowd BF, Uhl GR (2000) Human dopamine transporter gene: coding region conservation among normal, Tourette’s disorder, alcohol dependence and attention-deficit hyperactivity disorder populations. Mol Psychiatry 5:283–292

    Article  PubMed  CAS  Google Scholar 

  32. Grünhage F, Schulze TG, Müller DJ, Lanczik M, Franzek E, Albus M, Borrmann-Hassenbach M, Knapp M, Cichon S, Maier W, Rietschel M, Propping P, Nöthen MM (2000) Systematic screening for DNA sequence variation in the coding region of the human dopamine transporter gene (DAT1). Mol Psychiatry 5:275–282

    Article  PubMed  Google Scholar 

  33. Sacchetti P, Brownschidle LA, Granneman JG, Brannon MJ (1999) Characterization of the 5′-flanking region of the human dopamine transporter gene. Brain Res Mol Brain Res 74:167–174

    Article  PubMed  CAS  Google Scholar 

  34. Wang J, Bannon MJ (2005) Sp1 and Sp3 activate transcription of the human dopamine transporter gene. J Neurochem 93:474–482

    Article  PubMed  CAS  Google Scholar 

  35. Kouzmenko AP, Pereira AM, Singh BS (1997) Intronic sequences are involved in neural targeting of human dopamine transporter gene expression. Biochem Biophys Res Commun 240:807–811

    Article  PubMed  CAS  Google Scholar 

  36. Bouwman P, Philipsen S (2002) Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol 195:27–38

    Article  PubMed  CAS  Google Scholar 

  37. Ramji DP, Tadros MH, Hardon EM, Cortese R (1991) The transcription factor LF-A1 interacts with a bipartite recognition sequence in the promoter regions of several liver-specific genes. Nucleic Acids Res 19:1139–1146

    PubMed  CAS  Google Scholar 

  38. Dynan WS, Tjian R (1983) Isolation of transcription factors that discriminate between different promoters recognized by RNA polymerase II. Cell 32:669–680

    Article  PubMed  CAS  Google Scholar 

  39. Liu Z, Thompson KS, Towle HC (1993) Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors: LF-A1 and a member of the c-myc family. J Biol Chem 268:12787–12795

    PubMed  CAS  Google Scholar 

  40. Peers B, Voz ML, Monget P, Mathy-Hartert M, Berwaer M, Belayew A, Martial JA (1990) Regulatory elements controlling pituitary-specific expression of the human prolactin gene. Mol Cell Biol 10:4690–4700

    PubMed  CAS  Google Scholar 

  41. Li S, Crenshaw EB, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG (1990) Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347:528–533

    Article  PubMed  CAS  Google Scholar 

  42. Rainbow LA, Rees SA, Shaikh MG, Shaw NJ, Cole T, Barrett TG, Kirk JM (2005) Mutation analysis of POUF-1, PROP-1 and HESX-1 show low frequency of mutations in children with sporadic forms of combined pituitary hormone deficiency and septo-optic dysplasia. Clin Endocrinol 62:163–168

    Article  CAS  Google Scholar 

  43. Laakso A, Bergman J, Haaparanta M, Vilkman H, Solin O, Syvalahti E, Hietala J (2001) Decreased striatal dopamine transporter binding in vivo in chronic schizophrenia. Schizophr Res 52:115–120

    Article  PubMed  CAS  Google Scholar 

  44. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 46:56–72

    Article  PubMed  CAS  Google Scholar 

  45. Stöber G, Sprandel J, Schmidt F, Faul T, Jabs B, Knapp M (2006) Association study of 5′-UTR polymorphisms of the human dopamine transporter gene with manic-depression (Bipolar Disorder accepted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Stöber MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stöber, G., Sprandel, J., Jabs, B. et al. Family-based study of markers at the 5′-flanking region of the human dopamine transporter gene reveals potential association with schizophrenic psychoses. Eur Arch Psychiatry Clin Neurosci 256, 422–427 (2006). https://doi.org/10.1007/s00406-006-0657-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-006-0657-3

Key words

Navigation