Skip to main content
Log in

Residual nasal polyp tissue following dupilumab therapy is associated with periostin-associated fibrosis

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Purpose

Dupilumab, an anti-interleukin-4 receptor alpha monoclonal antibody, is a new treatment for severe uncontrolled chronic rhinosinusitis with nasal polyps. However, data on the effect of dupilumab on histological changes in nasal polyp tissue are lacking. We aimed to investigate the effect of dupilumab on real-life clinical conditions and nasal polyp tissues from patients with eosinophilic chronic rhinosinusitis (ECRS), which is a refractory subtype.

Methods

We conducted an open-label, prospective, observational, single-centre study on 63 patients with refractory ECRS on the basis of the criteria of the Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis Study. These patients had a history of surgery and received dupilumab for 24 weeks. Patient-reported sinonasal symptoms, T&T olfactometry and nasal polyp scores were prospectively evaluated. In 23 patients with residual nasal polyps following dupilumab treatment, changes in systemic and local periostin expression, and total collagen deposition in nasal polyp tissues were investigated before and after dupilumab administration.

Results

Dupilumab rapidly improved sinonasal symptoms and reduced the nasal polyp score 24 weeks after initiation. 40 (63.5%) patients had resolution of nasal polyps, but the reduction was limited in the remaining 23 (36.5%) patients. Periostin expression in serum and nasal lavage fluid was decreased, whereas periostin and the total collagen deposition area in subepithelial tissues in residual nasal polyps were enhanced after dupilumab administration.

Conclusion

Dupilumab improves sinonasal symptoms and reduces the nasal polyp score in refractory ECRS. Periostin-associated tissue fibrosis may be involved in the differential effect of dupilumab on nasal polyp reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Abbreviations

CRS:

Chronic rhinosinusitis

CRSwNP:

Chronic rhinosinusitis with nasal polyps

CRSsNP:

Chronic rhinosinusitis without nasal polyps

CT:

Computed tomography

ECRS:

Eosinophilic chronic rhinosinusitis

ECM:

Extracellular matrix

FeNO:

Fractional exhaled nitric oxide

IL:

Interleukin

JESREC:

Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis

NERD:

Nonsteroidal anti-inflammatory drug exacerbated respiratory disease

NLF:

Nasal lavage fluid

NPS:

Nasal polyp score

SNOT-22:

Sino-Nasal Outcome Test-22

SD:

Standard deviation

T1:

Type 1

T2:

Type 2

T3:

Type 3

TARC:

Thymus and activation-regulated chemokine

OCS:

Oral corticosteroid

VAS:

Visual analogue scale

References

  1. Fokkens WJ, Lund VJ, Hopkins C et al (2020) European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 58:1–464. https://doi.org/10.4193/Rhin20.600

    Article  PubMed  Google Scholar 

  2. Grayson JW, Hopkins C, Mori E, Senior B, Harvey RJ (2020) Contemporary classification of chronic rhinosinusitis beyond polyps vs no polyps: a review. JAMA Otolaryngology-Head & Neck Surgery 146:831–838. https://doi.org/10.1001/jamaoto.2020.1453

    Article  Google Scholar 

  3. Tokunaga T, Sakashita M, Haruna T et al (2015) Novel scoring system and algorithm for classifying chronic rhinosinusitis: the JESREC Study. Allergy 70:995–1003. https://doi.org/10.1111/all.12644

    Article  CAS  PubMed  Google Scholar 

  4. Fujieda S, Imoto Y, Kato Y et al (2019) Eosinophilic chronic rhinosinusitis. Allergol Int 68:403–412. https://doi.org/10.1016/j.alit.2019.07.002

    Article  CAS  PubMed  Google Scholar 

  5. Takabayashi T, Schleimer RP (2020) Formation of nasal polyps: The roles of innate type 2 inflammation and deposition of fibrin. J Allergy Clin Immunol 145:740–750. https://doi.org/10.1016/j.jaci.2020.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bachert C, Han JK, Desrosiers M et al (2019) Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 394:1638–1650. https://doi.org/10.1016/s0140-6736(19)31881-1

    Article  CAS  PubMed  Google Scholar 

  7. Fujieda S, Matsune S, Takeno S et al (2022) Dupilumab efficacy in chronic rhinosinusitis with nasal polyps from SINUS-52 is unaffected by eosinophilic status. Allergy 77:186–196. https://doi.org/10.1111/all.14906

    Article  CAS  PubMed  Google Scholar 

  8. (GINA) GIfA Global Strategy for Asthma Management and Prevention. GINA Updated Report 2022. Accessed 01 June 2023***

  9. Kowalski ML, Agache I, Bavbek S et al (2019) Diagnosis and management of NSAID-exacerbated respiratory disease (N-ERD)-a EAACI position paper. Allergy 74:28–39. https://doi.org/10.1111/all.13599

    Article  PubMed  Google Scholar 

  10. Miwa T, Ikeda K, Ishibashi T et al (2019) Clinical practice guidelines for the management of olfactory dysfunction—secondary publication. Auris Nasus Larynx 46:653–662. https://doi.org/10.1016/j.anl.2019.04.002

    Article  PubMed  Google Scholar 

  11. Gevaert P, Calus L, Van Zele T et al (2013) Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol 131:110-116.e111. https://doi.org/10.1016/j.jaci.2012.07.047

    Article  CAS  PubMed  Google Scholar 

  12. Takayama G, Arima K, Kanaji T et al (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118:98–104. https://doi.org/10.1016/j.jaci.2006.02.046

    Article  CAS  PubMed  Google Scholar 

  13. Ninomiya T, Noguchi E, Haruna T et al (2018) Periostin as a novel biomarker for postoperative recurrence of chronic rhinosinitis with nasal polyps. Sci Rep 8:11450. https://doi.org/10.1038/s41598-018-29612-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kato A, Peters AT, Stevens WW, Schleimer RP, Tan BK, Kern RC (2022) Endotypes of chronic rhinosinusitis: Relationships to disease phenotypes, pathogenesis, clinical findings, and treatment approaches. Allergy 77:812–826. https://doi.org/10.1111/all.15074

    Article  PubMed  Google Scholar 

  15. Kato A, Schleimer RP, Bleier BS (2022) Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol 149:1491–1503. https://doi.org/10.1016/j.jaci.2022.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakayama T, Sugimoto N, Okada N et al (2019) JESREC score and mucosal eosinophilia can predict endotypes of chronic rhinosinusitis with nasal polyps. Auris Nasus Larynx 46:374–383. https://doi.org/10.1016/j.anl.2018.09.004

    Article  PubMed  Google Scholar 

  17. Kim DK, Kang SI, Kong IG et al (2018) Two-track medical treatment strategy according to the clinical scoring system for chronic rhinosinusitis. Allergy Asthma Immunol Res 10:490–502. https://doi.org/10.4168/aair.2018.10.5.490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jansen F, Becker B, Eden JK et al (2023) Dupilumab (Dupixent(®)) tends to be an effective therapy for uncontrolled severe chronic rhinosinusitis with nasal polyps: real data of a single-centered, retrospective single-arm longitudinal study from a university hospital in Germany. Eur Arch Otorhinolaryngol 280:1741–1755. https://doi.org/10.1007/s00405-022-07679-y

    Article  PubMed  Google Scholar 

  19. De Corso E, Settimi S, Montuori C et al (2022) Effectiveness of dupilumab in the treatment of patients with severe uncontrolled CRSwNP: a “real-life” observational study in the first year of treatment. J Clin Med 11:2684. https://doi.org/10.3390/jcm11102684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kashiwagi T, Tsunemi Y, Akutsu M, Nakajima I, Haruna S (2019) Postoperative evaluation of olfactory dysfunction in eosinophilic chronic rhinosinusitis—comparison of histopathological and clinical findings. Acta Otolaryngol 139:881–889. https://doi.org/10.1080/00016489.2019.1654131

    Article  PubMed  Google Scholar 

  21. Van Zele T, Gevaert P, Holtappels G et al (2010) Oral steroids and doxycycline: two different approaches to treat nasal polyps. J Allergy Clin Immunol 125:1069-1076.e1064. https://doi.org/10.1016/j.jaci.2010.02.020

    Article  CAS  PubMed  Google Scholar 

  22. Ecevit MC, Erdag TK, Dogan E, Sutay S (2015) Effect of steroids for nasal polyposis surgery: a placebo-controlled, randomized, double-blind study. Laryngoscope 125:2041–2045. https://doi.org/10.1002/lary.25352

    Article  CAS  PubMed  Google Scholar 

  23. Hissaria P, Smith W, Wormald PJ et al (2006) Short course of systemic corticosteroids in sinonasal polyposis: a double-blind, randomized, placebo-controlled trial with evaluation of outcome measures. J Allergy Clin Immunol 118:128–133. https://doi.org/10.1016/j.jaci.2006.03.012

    Article  CAS  PubMed  Google Scholar 

  24. Mullol J, Mariño-Sánchez F, Valls M, Alobid I, Marin C (2020) The sense of smell in chronic rhinosinusitis. J Allergy Clin Immunol 145:773–776. https://doi.org/10.1016/j.jaci.2020.01.024

    Article  PubMed  Google Scholar 

  25. Stevens WW, Peters AT, Tan BK et al (2019) Associations between inflammatory endotypes and clinical presentations in chronic rhinosinusitis. J Allergy Clin Immunol Pract 7:2812-2820.e2813. https://doi.org/10.1016/j.jaip.2019.05.009

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mullol J, Bachert C, Amin N et al (2022) Olfactory outcomes with dupilumab in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol Pract 10:1086-1095.e1085. https://doi.org/10.1016/j.jaip.2021.09.037

    Article  CAS  PubMed  Google Scholar 

  27. Saraswathula A, Liu MM, Kulaga H, Lane AP (2023) Chronic interleukin-13 expression in mouse olfactory mucosa results in regional aneuronal epithelium. Int Forum Allergy Rhinol 13:230–241. https://doi.org/10.1002/alr.23073

    Article  PubMed  Google Scholar 

  28. Wu J, Chandra RK, Li P, Hull BP, Turner JH (2018) Olfactory and middle meatal cytokine levels correlate with olfactory function in chronic rhinosinusitis. Laryngoscope 128:E304-e310. https://doi.org/10.1002/lary.27112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soler ZM, Yoo F, Schlosser RJ et al (2020) Correlation of mucus inflammatory proteins and olfaction in chronic rhinosinusitis. Int Forum Allergy Rhinol 10:343–355. https://doi.org/10.1002/alr.22499

    Article  PubMed  Google Scholar 

  30. Izuhara K, Nunomura S, Nanri Y, Ono J, Takai M, Kawaguchi A (2019) Periostin: an emerging biomarker for allergic diseases. Allergy 74:2116–2128. https://doi.org/10.1111/all.13814

    Article  PubMed  Google Scholar 

  31. Suzaki I, Kawano S, Komiya K et al (2017) Inhibition of IL-13-induced periostin in airway epithelium attenuates cellular protein expression of MUC5AC. Respirology 22:93–100. https://doi.org/10.1111/resp.12873

    Article  PubMed  Google Scholar 

  32. Izuhara K, Conway SJ, Moore BB et al (2016) Roles of periostin in respiratory disorders. Am J Respir Crit Care Med 193:949–956. https://doi.org/10.1164/rccm.201510-2032PP

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ebenezer JA, Christensen JM, Oliver BG et al (2017) Periostin as a marker of mucosal remodelling in chronic rhinosinusitis. Rhinology 55:234–241. https://doi.org/10.4193/Rhino16.215

    Article  CAS  PubMed  Google Scholar 

  34. Ishida A, Ohta N, Suzuki Y et al (2012) Expression of pendrin and periostin in allergic rhinitis and chronic rhinosinusitis. Allergol Int 61:589–595. https://doi.org/10.2332/allergolint.11-OA-0370

    Article  CAS  PubMed  Google Scholar 

  35. Izuhara K, Fujieda S, Ohta N (2023) The functional role and the clinical application of periostin in chronic rhinosinusitis. Expert Rev Clin Immunol:1–10. https://doi.org/10.1080/1744666x.2023.2192928

  36. Zhang Z, Liu J, Xie L, Cao W, Ma F, Zhang Y (2022) Tissue eosinophils and mucous inflammatory cytokines for the evaluation of olfactory recovery after endoscopic sinus surgery in patients with nasal polyposis. Am J Otolaryngol 43:103561. https://doi.org/10.1016/j.amjoto.2022.103561

    Article  CAS  PubMed  Google Scholar 

  37. Mueller SK, Wendler O, Nocera A et al (2019) Escalation in mucus cystatin 2, pappalysin-A, and periostin levels over time predict need for recurrent surgery in chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 9:1212–1219. https://doi.org/10.1002/alr.22407

    Article  PubMed  Google Scholar 

  38. Jonstam K, Westman M, Holtappels G, Holweg CTJ, Bachert C (2017) Serum periostin, IgE, and SE-IgE can be used as biomarkers to identify moderate to severe chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 140:1705-1708.e1703. https://doi.org/10.1016/j.jaci.2017.07.031

    Article  CAS  PubMed  Google Scholar 

  39. Bachert C, Corren J, Lee SE et al (2022) Dupilumab efficacy and biomarkers in chronic rhinosinusitis with nasal polyps: association between dupilumab treatment effect on nasal polyp score and biomarkers of type 2 inflammation in patients with chronic rhinosinusitis with nasal polyps in the phase 3 SINUS-24 and SINUS-52 trials. Int Forum Allergy Rhinol 12:1191–1195. https://doi.org/10.1002/alr.22964

    Article  PubMed  PubMed Central  Google Scholar 

  40. Feng X, Payne SC, Borish L, Steinke JW (2019) Differential expression of extracellular matrix components in nasal polyp endotypes. Am J Rhinol Allergy 33:665–670. https://doi.org/10.1177/1945892419860634

    Article  PubMed  PubMed Central  Google Scholar 

  41. Payne SC, Early SB, Huyett P, Han JK, Borish L, Steinke JW (2011) Evidence for distinct histologic profile of nasal polyps with and without eosinophilia. Laryngoscope 121:2262–2267. https://doi.org/10.1002/lary.21969

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim JW, Hong SL, Kim YK, Lee CH, Min YG, Rhee CS (2007) Histological and immunological features of non-eosinophilic nasal polyps. Otolaryngol Head Neck Surg 137:925–930. https://doi.org/10.1016/j.otohns.2007.07.036

    Article  PubMed  Google Scholar 

  43. Shin SH, Kim YH, Ye MK, Choi SY (2017) Immunopathologic characteristics of nasal polyps in adult Koreans: a single-center study. Am J Rhinol Allergy 31:168–173. https://doi.org/10.2500/ajra.2017.31.4423

    Article  PubMed  Google Scholar 

  44. Hopkins C, Wagenmann M, Bachert C et al (2021) Efficacy of dupilumab in patients with a history of prior sinus surgery for chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol 11:1087–1101. https://doi.org/10.1002/alr.22780

    Article  PubMed  PubMed Central  Google Scholar 

  45. Poposki JA, Klingler AI, Stevens WW et al (2022) Elevation of activated neutrophils in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 149:1666–1674. https://doi.org/10.1016/j.jaci.2021.11.023

    Article  CAS  PubMed  Google Scholar 

  46. Delemarre T, Bochner BS, Simon HU, Bachert C (2021) Rethinking neutrophils and eosinophils in chronic rhinosinusitis. J Allergy Clin Immunol 148:327–335. https://doi.org/10.1016/j.jaci.2021.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Delemarre T, Holtappels G, De Ruyck N et al (2021) A substantial neutrophilic inflammation as regular part of severe type 2 chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 147:179-188.e172. https://doi.org/10.1016/j.jaci.2020.08.036

    Article  CAS  PubMed  Google Scholar 

  48. Bachert C, Han JK, Wagenmann M et al (2021) EUFOREA expert board meeting on uncontrolled severe chronic rhinosinusitis with nasal polyps (CRSwNP) and biologics: Definitions and management. J Allergy Clin Immunol 147:29–36. https://doi.org/10.1016/j.jaci.2020.11.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Leah Cannon, PhD and J. Ludovic Croxford, PhD from Edanz for editing a draft of this manuscript.

Funding

This work was supported by a Grant-in-Aid for Early-Career Scientists (JSPS KAKENHI grant number: JP20K18295).

Author information

Authors and Affiliations

Authors

Contributions

IS collected data and prepared the article. YM, SK and KH collected and summarised the data. SN and KI contributed to interpretation of the results regarding periostin. KI and HK critically revised the manuscript for important intellectual content. All authors approved the final version.

Corresponding author

Correspondence to Isao Suzaki.

Ethics declarations

Conflict of interest

I.S.: Sanofi—speaker fee and research grant. K.H.: Sanofi—speaker fee.

Ethics approval and consent to participate

This prospective, open-label observational study was approved by the ethical committee of Showa University (approval number 3351, approval date 4 January 2021).

Consent for publication

Written informed consent for the publication of patients’ clinical details and clinical images was obtained from the patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38562 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzaki, I., Maruyama, Y., Kamimura, S. et al. Residual nasal polyp tissue following dupilumab therapy is associated with periostin-associated fibrosis. Eur Arch Otorhinolaryngol 281, 1807–1817 (2024). https://doi.org/10.1007/s00405-023-08336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-023-08336-8

Keywords

Navigation