Skip to main content

Advertisement

Log in

Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Introduction

Despite intensive research, preterm birth (PTB) rates have not decreased significantly in recent years due to a lack of understanding of the underlying causes and insufficient treatment options for PTB. We are committed to finding promising biomarkers for the treatment of PTB.

Methods

An extensive search of the literature was conducted with MEDLINE/PubMed, and in total, 151 studies were included and summarized in the present review.

Results

Substantial evidence supports that the infection and/or inflammatory cascade associated with infection is an early event in PTB. Toll-like receptor (TLR) is a prominent pattern recognition receptor (PRR) found on both immune and non-immune cells, including fetal membrane cells. The activation of TLR downstream molecules, followed by TLR binding to its ligand, is critical for infection and inflammation, leading to the involvement of the TLR signaling pathway in PTB. TLR ligands are derived from microbial components and molecules released by damaged and dead cells. Particularly, TLR4 is an essential TLR because of its ability to recognize lipopolysaccharide (LPS). In this comprehensive overview, we discuss the role of TLR signaling in PTB, focus on numerous host-derived genetic and epigenetic regulators of the TLR signaling pathway, and cover ongoing research and prospective therapeutic options for treating PTB by inhibiting TLR signaling.

Conclusion

This is a critical topic because TLR-related molecules and mechanisms may enable obstetricians to better understand the physiological changes in PTB and develop new treatment and prevention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Feng L, Allen TK, Marinello WP, Murtha AP (2018) Infection-induced thrombin production: a potential novel mechanism for preterm premature rupture of membranes (PPROM). Am J Obstet Gynecol 219:101.e1-e12. https://doi.org/10.1016/j.ajog.2018.04.014

    Article  CAS  PubMed  Google Scholar 

  2. Suff N, Karda R, Diaz JA, Ng J, Baruteau J, Perocheau D, Taylor PW, Alber D, Buckley SMK, Bajaj-Elliott M, Waddington SN, Peebles D (2020) Cervical gene delivery of the antimicrobial peptide, human β-defensin (HBD)-3, in a mouse model of ascending infection-related preterm birth. Front Immunol 11:106. https://doi.org/10.3389/fimmu.2020.00106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Filipovich Y, Klein J, Zhou Y, Hirsch E (2016) Maternal and fetal roles in bacterially induced preterm labor in the mouse. Am J Obstet Gynecol 214:386.e1–9. https://doi.org/10.1016/j.ajog.2015.10.014

    Article  PubMed  Google Scholar 

  4. Thakur M, Lata S, Pal A, Sharma H, Dhiman B (2021) Relationship between histologic chorioamnionitis and genital tract cultures in pre term labour. J Obstet Gynaecol 41:721–725. https://doi.org/10.1080/01443615.2020.1789955

    Article  CAS  PubMed  Google Scholar 

  5. Romero R, Gomez-Lopez N, Winters AD, Jung E, Shaman M, Bieda J, Panaitescu B, Pacora P, Erez O, Greenberg JM, Ahmad MM, Hsu CD, Theis KR (2019) Evidence that intra-amniotic infections are often the result of an ascending invasion—a molecular microbiological study. J Perinat Med 47:915–931. https://doi.org/10.1515/jpm-2019-0297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Donati L, Di Vico A, Nucci M, Quagliozzi L, Spagnuolo T, Labianca A, Bracaglia M, Ianniello F, Caruso A, Paradisi G (2010) Vaginal microbial flora and outcome of pregnancy. Arch Gynecol Obstet 281:589–600. https://doi.org/10.1007/s00404-009-1318-3

    Article  PubMed  Google Scholar 

  7. Suff N, Karda R, Diaz JA, Ng J, Baruteau J, Perocheau D, Tangney M, Taylor PW, Peebles D, Buckley SMK, Waddington SN (2018) Ascending vaginal infection using bioluminescent bacteria evokes intrauterine inflammation, preterm birth, and neonatal brain injury in pregnant mice. Am J Pathol 188:2164–2176. https://doi.org/10.1016/j.ajpath.2018.06.016

    Article  PubMed  Google Scholar 

  8. Xu YP, Hu JM, Huang YQ, Shi LP (2022) Maternal Ureaplasma exposure during pregnancy and the risk of preterm birth and BPD: a meta-analysis. Arch Gynecol Obstet. https://doi.org/10.1007/s00404-022-06491-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. He W, Jin Y, Zhu H, Zheng Y, Qian J (2020) Effect of Chlamydia trachomatis on adverse pregnancy outcomes: a meta-analysis. Arch Gynecol Obstet 302:553–567. https://doi.org/10.1007/s00404-020-05664-6

    Article  CAS  PubMed  Google Scholar 

  10. Iavazzo C, Tassis K, Gourgiotis D, Boutsikou M, Baka S, Hassiakos D, Hadjithomas A, Botsis D, Malamitsi-Puchner A (2010) The role of human beta defensins 2 and 3 in the second trimester amniotic fluid in predicting preterm labor and premature rupture of membranes. Arch Gynecol Obstet 281:793–799. https://doi.org/10.1007/s00404-009-1155-4

    Article  CAS  PubMed  Google Scholar 

  11. Rogers LM, Anders AP, Doster RS, Gill EA, Gnecco JS, Holley JM, Randis TM, Ratner AJ, Gaddy JA, Osteen K, Aronoff DM (2018) Decidual stromal cell-derived PGE(2) regulates macrophage responses to microbial threat. Am J Reprod Immunol 80:e13032. https://doi.org/10.1111/aji.13032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Firmal P, Shah VK, Chattopadhyay S (2020) Insight into TLR4-mediated immunomodulation in normal pregnancy and related disorders. Front Immunol 11:807. https://doi.org/10.3389/fimmu.2020.00807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robertson SA, Hutchinson MR, Rice KC, Chin PY, Moldenhauer LM, Stark MJ, Olson DM, Keelan JA (2020) Targeting Toll-like receptor-4 to tackle preterm birth and fetal inflammatory injury. Clin Transl Immunol 9:e1121. https://doi.org/10.1002/cti2.1121

    Article  Google Scholar 

  14. Satoh T, Akira S (2016) Toll-like receptor signaling and its inducible proteins. Microbiol Spectrum. https://doi.org/10.1128/microbiolspec.MCHD-0040-2016

    Article  Google Scholar 

  15. Oosenbrug T, van de Graaff MJ, Ressing ME, van Kasteren SI (2017) Chemical tools for studying TLR signaling dynamics. Cell Chem Biol 24:801–812. https://doi.org/10.1016/j.chembiol.2017.05.022

    Article  CAS  PubMed  Google Scholar 

  16. Patra MC, Choi S (2016) Recent progress in the development of Toll-like receptor (TLR) antagonists. Expert Opin Ther Pat 26:719–730. https://doi.org/10.1080/13543776.2016.1185415

    Article  CAS  PubMed  Google Scholar 

  17. Balka KR, De Nardo D (2019) Understanding early TLR signaling through the Myddosome. J Leukoc Biol 105:339–351. https://doi.org/10.1002/jlb.Mr0318-096r

    Article  CAS  PubMed  Google Scholar 

  18. McClure R, Massari P (2014) TLR-dependent human mucosal epithelial cell responses to microbial pathogens. Front Immunol 5:386. https://doi.org/10.3389/fimmu.2014.00386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kumar N, Nandula P, Menden H, Jarzembowski J, Sampath V (2017) Placental TLR/NLR expression signatures are altered with gestational age and inflammation. J Maternal-Fetal Neonatal Med 30:1588–1595. https://doi.org/10.1080/14767058.2016.1214705

    Article  CAS  Google Scholar 

  20. Cappelletti M, Doll JR, Stankiewicz TE, Lawson MJ, Sauer V, Wen B, Kalinichenko VV, Sun X, Tilburgs T, Divanovic S (2020) Maternal regulation of inflammatory cues is required for induction of preterm birth. JCI Insight. https://doi.org/10.1172/jci.insight.138812

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reuschel E, Toelge M, Entleutner K, Deml L, Seelbach-Goebel B (2019) Cytokine profiles of umbilical cord blood mononuclear cells upon in vitro stimulation with lipopolysaccharides of different vaginal gram-negative bacteria. PLoS ONE 14:e0222465. https://doi.org/10.1371/journal.pone.0222465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cappelletti M, Lawson MJ, Chan CC, Wilburn AN, Divanovic S (2018) Differential outcomes of TLR2 engagement in inflammation-induced preterm birth. J Leukoc Biol 103:535–543. https://doi.org/10.1002/jlb.3ma0717-274rr

    Article  CAS  PubMed  Google Scholar 

  23. Jing X, Min C, Qi Yun L, Shun Qin H, Li Rui L, Jia L, Run MM (2020) Toll-like receptor 2/4 inhibitors can reduce preterm birth in mice. J Int Med Res 48:300060520933795. https://doi.org/10.1177/0300060520933795

    Article  CAS  PubMed  Google Scholar 

  24. Agrawal V, Jaiswal MK, Ilievski V, Beaman KD, Jilling T, Hirsch E (2014) Platelet-activating factor: a role in preterm delivery and an essential interaction with Toll-like receptor signaling in mice. Biol Reprod 91:119. https://doi.org/10.1095/biolreprod.113.116012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Strauss JF 3rd, Romero R, Gomez-Lopez N, Haymond-Thornburg H, Modi BP, Teves ME, Pearson LN, York TP, Schenkein HA (2018) Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Am J Obstet Gynecol 218:294-314.e2. https://doi.org/10.1016/j.ajog.2017.12.009

    Article  PubMed  Google Scholar 

  26. Motomura K, Romero R, Galaz J, Tarca AL, Done B, Xu Y, Leng Y, Garcia-Flores V, Arenas-Hernandez M, Theis KR, Gershater M, Jung E, Hsu CD, Gomez-Lopez N (2021) RNA sequencing reveals distinct immune responses in the chorioamniotic membranes of women with preterm labor and microbial or sterile intra-amniotic inflammation. Infect Immun. https://doi.org/10.1128/iai.00819-20

    Article  PubMed  PubMed Central  Google Scholar 

  27. Motedayyen H, Fathi F, Fasihi-Ramandi M, Sabzghabaee AM, Taheri RA (2019) Toll-like receptor 4 activation on human amniotic epithelial cells is a risk factor for pregnancy loss. J Res Med Sci 24:1. https://doi.org/10.4103/jrms.JRMS_463_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park JW, Park KH, Kook SY, Jung YM, Kim YM (2019) Immune biomarkers in maternal plasma to identify histologic chorioamnionitis in women with preterm labor. Arch Gynecol Obstet 299:725–732. https://doi.org/10.1007/s00404-019-05061-8

    Article  CAS  PubMed  Google Scholar 

  29. Krasnyi AM, Sadekova AA, Vtorushina VV, Кan NE, Tyutyunnik VL, Krechetova LV (2022) Extracellular DNA levels and cytokine profiles in preterm birth: a cohort study. Arch Gynecol Obstet. https://doi.org/10.1007/s00404-022-06456-w

    Article  PubMed  Google Scholar 

  30. Costa EM, de Araujo Figueiredo CS, Martins RFM, Ribeiro CCC, Alves CMC, Sesso MLT, Nogueira RD, da Conceição SM, Barbieri MA, Bettiol H, da Silva AAM, Thomaz E (2019) Periodontopathogenic microbiota, infectious mechanisms and preterm birth: analysis with structural equations (cohort-BRISA). Arch Gynecol Obstet 300:1521–1530. https://doi.org/10.1007/s00404-019-05355-x

    Article  CAS  PubMed  Google Scholar 

  31. Cappelletti M, Presicce P, Lawson MJ, Chaturvedi V, Stankiewicz TE, Vanoni S, Harley IT, McAlees JW, Giles DA, Moreno-Fernandez ME, Rueda CM, Senthamaraikannan P, Sun X, Karns R, Hoebe K, Janssen EM, Karp CL, Hildeman DA, Hogan SP, Kallapur SG, Chougnet CA, Way SS, Divanovic S (2017) Type I interferons regulate susceptibility to inflammation-induced preterm birth. JCI insight 2:e91288. https://doi.org/10.1172/jci.insight.91288

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kim JY, Choi GE, Yoo HJ, Kim HS (2017) Interferon potentiates Toll-like receptor-induced prostaglandin D(2) production through positive feedback regulation between signal transducer and activators of transcription 1 and reactive oxygen species. Front Immunol 8:1720. https://doi.org/10.3389/fimmu.2017.01720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Furcron AE, Romero R, Plazyo O, Unkel R, Xu Y, Hassan SS, Chaemsaithong P, Mahajan A, Gomez-Lopez N (2015) Vaginal progesterone, but not 17α-hydroxyprogesterone caproate, has antiinflammatory effects at the murine maternal-fetal interface. Am J Obstet Gynecol 213:846.e1-e19. https://doi.org/10.1016/j.ajog.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  34. Flores-Herrera H, García-López G, Díaz NF, Molina-Hernández A, Osorio-Caballero M, Soriano-Becerril D, Zaga-Clavellina V (2012) An experimental mixed bacterial infection induced differential secretion of proinflammatory cytokines (IL-1β, TNFα) and proMMP-9 in human fetal membranes. Placenta 33:271–277. https://doi.org/10.1016/j.placenta.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  35. Park HR, Harris SM, Boldenow E, McEachin RC, Sartor M, Chames M, Loch-Caruso R (2018) Group B streptococcus activates transcriptomic pathways related to premature birth in human extraplacental membranes in vitro. Biol Reprod 98:396–407. https://doi.org/10.1093/biolre/iox147

    Article  PubMed  Google Scholar 

  36. Aisemberg J, Bariani MV, Vercelli CA, Wolfson ML, Franchi AM (2012) Lipopolysaccharide-induced murine embryonic resorption involves nitric oxide-mediated inhibition of the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Reproduction (Cambridge, England) 144:447–454. https://doi.org/10.1530/rep-12-0186

    Article  CAS  PubMed  Google Scholar 

  37. Burdet J, Sacerdoti F, Cella M, Franchi AM, Ibarra C (2013) Role of TNF-α in the mechanisms responsible for preterm delivery induced by Stx2 in rats. Br J Pharmacol 168:946–953. https://doi.org/10.1111/j.1476-5381.2012.02239.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mizrachi Y, Barber E, Torem M, Tairy D, Weiner E, Bar J, Schreiber L, Kovo M (2019) Is there a role for placental histopathology in predicting the recurrence of preterm birth? Arch Gynecol Obstet 300:917–923. https://doi.org/10.1007/s00404-019-05266-x

    Article  CAS  PubMed  Google Scholar 

  39. Holst D, Garnier Y (2008) Preterm birth and inflammation-the role of genetic polymorphisms. Eur J Obstet Gynecol Reprod Biol 141:3–9. https://doi.org/10.1016/j.ejogrb.2008.07.020

    Article  CAS  PubMed  Google Scholar 

  40. Huusko JM, Karjalainen MK, Graham BE, Zhang G, Farrow EG, Miller NA, Jacobsson B, Eidem HR, Murray JC, Bedell B, Breheny P, Brown NW, Bødker FL, Litterman NK, Jiang PP, Russell L, Hinds DA, Hu Y, Rokas A, Teramo K, Christensen K, Williams SM, Rämet M, Kingsmore SF, Ryckman KK, Hallman M, Muglia LJ (2018) Whole exome sequencing reveals HSPA1L as a genetic risk factor for spontaneous preterm birth. PLoS Genet 14:e1007394. https://doi.org/10.1371/journal.pgen.1007394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liassides C, Papadopoulos A, Siristatidis C, Damoraki G, Liassidou A, Chrelias C, Kassanos D, Giamarellos-Bourboulis EJ (2019) Single nucleotide polymorphisms of Toll-like receptor-4 and of autophagy-related gene 16 like-1 gene for predisposition of premature delivery: a prospective study. Medicine 98:e17313. https://doi.org/10.1097/md.0000000000017313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karody VR, Le M, Nelson S, Meskin K, Klemm S, Simpson P, Hines R, Sampath V (2013) A TIR domain receptor-associated protein (TIRAP) variant SNP (rs8177374) confers protection against premature birth. J Perinatol 33:341–346. https://doi.org/10.1038/jp.2012.120

    Article  CAS  PubMed  Google Scholar 

  43. Liu X, Helenius D, Skotte L, Beaumont RN, Wielscher M, Geller F, Juodakis J, Mahajan A, Bradfield JP, Lin FTJ, Vogelezang S, Bustamante M, Ahluwalia TS, Pitkänen N, Wang CA, Bacelis J, Borges MC, Zhang G, Bedell BA, Rossi RM, Skogstrand K, Peng S, Thompson WK, Appadurai V, Lawlor DA, Kalliala I, Power C, McCarthy MI, Boyd HA, Marazita ML, Hakonarson H, Hayes MG, Scholtens DM, Rivadeneira F, Jaddoe VWV, Vinding RK, Bisgaard H, Knight BA, Pahkala K, Raitakari O, Helgeland Ø, Johansson S, Njølstad PR, Fadista J, Schork AJ, Nudel R, Miller DE, Chen X, Weirauch MT, Mortensen PB, Børglum AD, Nordentoft M, Mors O, Hao K, Ryckman KK, Hougaard DM, Kottyan LC, Pennell CE, Lyytikainen LP, Bønnelykke K, Vrijheid M, Felix JF, Lowe WL Jr, Grant SFA, Hyppönen E, Jacobsson B, Jarvelin MR, Muglia LJ, Murray JC, Freathy RM, Werge TM, Melbye M, Buil A, Feenstra B (2019) Variants in the fetal genome near pro-inflammatory cytokine genes on 2q13 associate with gestational duration. Nat Commun 10:3927. https://doi.org/10.1038/s41467-019-11881-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang X, Peng W, Zhu LN, Zhang XA, Wang Y (2016) Association between interleukin-1β C+3953T and genetic susceptibility to spontaneous preterm birth: a case-control study. Zhongguo Dang Dai Er Ke Za Zhi 18:1123–1129. https://doi.org/10.7499/j.issn.1008-8830.2016.11.014

    Article  PubMed  Google Scholar 

  45. Roberts AK, Monzon-Bordonaba F, Van Deerlin PG, Holder J, Macones GA, Morgan MA, Strauss JF 3rd, Parry S (1999) Association of polymorphism within the promoter of the tumor necrosis factor alpha gene with increased risk of preterm premature rupture of the fetal membranes. Am J Obstet Gynecol 180:1297–1302. https://doi.org/10.1016/s0002-9378(99)70632-0

    Article  CAS  PubMed  Google Scholar 

  46. Gillespie SL, Neal JL, Christian LM, Szalacha LA, McCarthy DO, Salsberry PJ (2017) Interleukin-1 receptor antagonist polymorphism and birth timing: pathway analysis among African American women. Nurs Res 66:95–104. https://doi.org/10.1097/nnr.0000000000000200

    Article  PubMed  PubMed Central  Google Scholar 

  47. Karakaş NM, Ecevit AN, Yalçın Y, Özdemir B, Verdi H, Tekindal MA, Özbek NY, Tarcan A, Ataç FB, Haberal A (2018) Effect of maternal and neonatal interleukin-6—174 G/C polymorphism on preterm birth and neonatal morbidity. J Maternal-Fetal Neonatal Med 31:1009–1015. https://doi.org/10.1080/14767058.2017.1304911

    Article  CAS  Google Scholar 

  48. Konwar C, Del Gobbo GF, Terry J, Robinson WP (2019) Association of a placental Interleukin-6 genetic variant (rs1800796) with DNA methylation, gene expression and risk of acute chorioamnionitis. BMC Med Genet 20:36. https://doi.org/10.1186/s12881-019-0768-0

    Article  PubMed  PubMed Central  Google Scholar 

  49. Menon R, Velez DR, Simhan H, Ryckman K, Jiang L, Thorsen P, Vogel I, Jacobsson B, Merialdi M, Williams SM, Fortunato SJ (2006) Multilocus interactions at maternal tumor necrosis factor-alpha, tumor necrosis factor receptors, interleukin-6 and interleukin-6 receptor genes predict spontaneous preterm labor in European-American women. Am J Obstet Gynecol 194:1616–1624. https://doi.org/10.1016/j.ajog.2006.03.059

    Article  CAS  PubMed  Google Scholar 

  50. Silva L, Javorski N, André Cavalcanti Brandão L, Lima MC, Crovella S, Eickmann SH (2020) Influence of MBL2 and NOS3 polymorphisms on spontaneous preterm birth in North East Brazil: genetics and preterm birth. J Maternal-Fetal Neonatal Med 33:127–135. https://doi.org/10.1080/14767058.2018.1487938

    Article  CAS  Google Scholar 

  51. Romero R, Velez Edwards DR, Kusanovic JP, Hassan SS, Mazaki-Tovi S, Vaisbuch E, Kim CJ, Chaiworapongsa T, Pearce BD, Friel LA, Bartlett J, Anant MK, Salisbury BA, Vovis GF, Lee MS, Gomez R, Behnke E, Oyarzun E, Tromp G, Williams SM, Menon R (2010) Identification of fetal and maternal single nucleotide polymorphisms in candidate genes that predispose to spontaneous preterm labor with intact membranes. Am J Obstet Gynecol 202:431.e1–34. https://doi.org/10.1016/j.ajog.2010.03.026

    Article  CAS  PubMed  Google Scholar 

  52. Schuster J, Uzun A, Stablia J, Schorl C, Mori M, Padbury JF (2019) Effect of prematurity on genome wide methylation in the placenta. BMC Med Genet 20:116. https://doi.org/10.1186/s12881-019-0835-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Goede OM, Lavoie PM, Robinson WP (2017) Cord blood hematopoietic cells from preterm infants display altered DNA methylation patterns. Clin Epigenetics 9:39. https://doi.org/10.1186/s13148-017-0339-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu Y, Lin X, Lim IY, Chen L, Teh AL, MacIsaac JL, Tan KH, Kobor MS, Chong YS, Gluckman PD, Karnani N (2019) Analysis of two birth tissues provides new insights into the epigenetic landscape of neonates born preterm. Clin Epigenetics 11:26. https://doi.org/10.1186/s13148-018-0599-4

    Article  PubMed  PubMed Central  Google Scholar 

  55. You YA, Kwon EJ, Hwang HS, Choi SJ, Choi SK, Kim YJ (2021) Elevated methylation of the vault RNA2-1 promoter in maternal blood is associated with preterm birth. BMC Genomics 22:528. https://doi.org/10.1186/s12864-021-07865-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Burris HH, Baccarelli AA, Motta V, Byun HM, Just AC, Mercado-Garcia A, Schwartz J, Svensson K, Téllez-Rojo MM, Wright RO (2014) Association between length of gestation and cervical DNA methylation of PTGER2 and LINE 1-HS. Epigenetics 9:1083–1091. https://doi.org/10.4161/epi.29170

    Article  PubMed  PubMed Central  Google Scholar 

  57. York TP, Latendresse SJ, Jackson-Cook C, Lapato DM, Moyer S, Wolen AR, Roberson-Nay R, Do EK, Murphy SK, Hoyo C, Fuemmeler BF, Strauss JF (2020) Replicated umbilical cord blood DNA methylation loci associated with gestational age at birth. Epigenetics 15:1243–1258. https://doi.org/10.1080/15592294.2020.1767277

    Article  PubMed  PubMed Central  Google Scholar 

  58. Salihu HM, Das R, Morton L, Huang H, Paothong A, Wilson RE, Aliyu MH, Salemi JL, Marty PJ (2016) Racial differences in DNA-methylation of CpG sites within preterm-promoting genes and gene variants. Matern Child Health J 20:1680–1687. https://doi.org/10.1007/s10995-016-1967-3

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, Hoyo C, Murphy S, Huang Z, Overcash F, Thompson J, Brown H, Murtha AP (2013) DNA methylation at imprint regulatory regions in preterm birth and infection. Am J Obstet Gynecol 208:395.e1–7. https://doi.org/10.1016/j.ajog.2013.02.006

    Article  CAS  PubMed  Google Scholar 

  60. Konwar C, Price EM, Wang LQ, Wilson SL, Terry J, Robinson WP (2018) DNA methylation profiling of acute chorioamnionitis-associated placentas and fetal membranes: insights into epigenetic variation in spontaneous preterm births. Epigenetics Chromatin 11:63. https://doi.org/10.1186/s13072-018-0234-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Abdi J, Rashedi I, Keating A (2018) Concise review: TLR pathway-miRNA interplay in mesenchymal stromal cells: regulatory roles and therapeutic directions. Stem cells (Dayton, Ohio) 36:1655–1662. https://doi.org/10.1002/stem.2902

    Article  CAS  PubMed  Google Scholar 

  62. Juknat A, Gao F, Coppola G, Vogel Z, Kozela E (2019) miRNA expression profiles and molecular networks in resting and LPS-activated BV-2 microglia-Effect of cannabinoids. PLoS ONE 14:e0212039. https://doi.org/10.1371/journal.pone.0212039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li Y, Shi X (2013) MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol 10:65–71. https://doi.org/10.1038/cmi.2012.55

    Article  CAS  PubMed  Google Scholar 

  64. Litak J, Grochowski C, Litak J, Osuchowska I, Gosik K, Radzikowska E, Kamieniak P, Rolinski J (2020) TLR-4 signaling vs. immune checkpoints, miRNAs molecules, cancer stem cells, and wingless-signaling interplay in glioblastoma multiforme-future perspectives. Int J Mol Sci. https://doi.org/10.3390/ijms21093114

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A (2013) Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 25:1939–1948. https://doi.org/10.1016/j.cellsig.2013.06.007

    Article  CAS  PubMed  Google Scholar 

  66. Bayraktar R, Bertilaccio MTS, Calin GA (2019) The interaction between two worlds: micrornas and toll-like receptors. Front Immunol 10:1053. https://doi.org/10.3389/fimmu.2019.01053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Son GH, Kim Y, Lee JJ, Lee KY, Ham H, Song JE, Park ST, Kim YH (2019) MicroRNA-548 regulates high mobility group box 1 expression in patients with preterm birth and chorioamnionitis. Sci Rep 9:19746. https://doi.org/10.1038/s41598-019-56327-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal PK, Sheller-Miller S, Salomon C (2019) Circulating exosomal miRNA profile during term and preterm birth pregnancies: a longitudinal study. Endocrinology 160:249–275. https://doi.org/10.1210/en.2018-00836

    Article  CAS  PubMed  Google Scholar 

  69. Winger EE, Reed JL, Ji X, Gomez-Lopez N, Pacora P, Romero R (2020) MicroRNAs isolated from peripheral blood in the first trimester predict spontaneous preterm birth. PLoS ONE 15:e0236805. https://doi.org/10.1371/journal.pone.0236805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ye HX, Li L, Dong YJ, Li PH, Su Q, Guo YH, Lu YR, Zhong Y, Jia Y, Cheng JQ (2020) miR-146a-5p improves the decidual cytokine microenvironment by regulating the toll-like receptor signaling pathway in unexplained spontaneous abortion. Int Immunopharmacol 89:107066. https://doi.org/10.1016/j.intimp.2020.107066

    Article  CAS  PubMed  Google Scholar 

  71. Cook J, Bennett PR, Kim SH, Teoh TG, Sykes L, Kindinger LM, Garrett A, Binkhamis R, MacIntyre DA, Terzidou V (2019) First trimester circulating MicroRNA biomarkers predictive of subsequent preterm delivery and cervical shortening. Sci Rep 9:5861. https://doi.org/10.1038/s41598-019-42166-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhou G, Holzman C, Heng YJ, Kibschull M, Lye SJ (2020) Maternal blood EBF1-based microRNA transcripts as biomarkers for detecting risk of spontaneous preterm birth: a nested case-control study. J Maternal-fetal Neonatal Med. https://doi.org/10.1080/14767058.2020.1745178

    Article  Google Scholar 

  73. Paquette AG, Shynlova O, Wu X, Kibschull M, Wang K, Price ND, Lye SJ (2019) MicroRNA-transcriptome networks in whole blood and monocytes of women undergoing preterm labour. J Cell Mol Med 23:6835–6845. https://doi.org/10.1111/jcmm.14567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hromadnikova I, Kotlabova K, Ivankova K, Krofta L (2017) Expression profile of C19MC microRNAs in placental tissue of patients with preterm prelabor rupture of membranes and spontaneous preterm birth. Mol Med Rep 16:3849–3862. https://doi.org/10.3892/mmr.2017.7067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang C, Lim W, Park J, Park S, You S, Song G (2019) Anti-inflammatory effects of mesenchymal stem cell-derived exosomal microRNA-146a-5p and microRNA-548e-5p on human trophoblast cells. Mol Hum Reprod 25:755–771. https://doi.org/10.1093/molehr/gaz054

    Article  CAS  PubMed  Google Scholar 

  76. Truong G, Guanzon D, Kinhal V, Elfeky O, Lai A, Longo S, Nuzhat Z, Palma C, Scholz-Romero K, Menon R, Mol BW, Rice GE, Salomon C (2017) Oxygen tension regulates the miRNA profile and bioactivity of exosomes released from extravillous trophoblast cells—liquid biopsies for monitoring complications of pregnancy. PLoS ONE 12:e0174514. https://doi.org/10.1371/journal.pone.0174514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fallen S, Baxter D, Wu X, Kim TK, Shynlova O, Lee MY, Scherler K, Lye S, Hood L, Wang K (2018) Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J Cell Mol Med 22:2760–2773. https://doi.org/10.1111/jcmm.13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gray C, McCowan LM, Patel R, Taylor RS, Vickers MH (2017) Maternal plasma miRNAs as biomarkers during mid-pregnancy to predict later spontaneous preterm birth: a pilot study. Sci Rep 7:815. https://doi.org/10.1038/s41598-017-00713-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tiozzo C, Bustoros M, Lin X, Manzano De Mejia C, Gurzenda E, Chavez M, Hanna I, Aguiari P, Perin L, Hanna N (2021) Placental extracellular vesicles-associated microRNA-519c mediates endotoxin adaptation in pregnancy. Am J Obstet Gynecol 225:681.e1-.e20. https://doi.org/10.1016/j.ajog.2021.06.075

    Article  CAS  PubMed  Google Scholar 

  80. Winger EE, Reed JL, Ji X (2017) Early first trimester peripheral blood cell microRNA predicts risk of preterm delivery in pregnant women: proof of concept. PLoS ONE 12:e0180124. https://doi.org/10.1371/journal.pone.0180124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tang Y, Ji H, Liu H, Liu J, Gu W, Peng T, Li X (2019) Pro-inflammatory cytokine-induced microRNA-212-3p expression promotes myocyte contraction via methyl-CpG-binding protein 2: a novel mechanism for infection-related preterm parturition. Mol Hum Reprod 25:274–282. https://doi.org/10.1093/molehr/gaz005

    Article  CAS  PubMed  Google Scholar 

  82. Belville C, Ponelle-Chachuat F, Rouzaire M, Gross C, Pereira B, Gallot D, Sapin V, Blanchon L (2022) Physiological TLR4 regulation in human fetal membranes as an explicative mechanism of a pathological preterm case. Elife. https://doi.org/10.7554/eLife.71521

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sanders AP, Burris HH, Just AC, Motta V, Svensson K, Mercado-Garcia A, Pantic I, Schwartz J, Tellez-Rojo MM, Wright RO, Baccarelli AA (2015) microRNA expression in the cervix during pregnancy is associated with length of gestation. Epigenetics 10:221–228. https://doi.org/10.1080/15592294.2015.1006498

    Article  PubMed  PubMed Central  Google Scholar 

  84. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR (2013) Pregnancy-associated miRNA-clusters. J Reprod Immunol 97:51–61. https://doi.org/10.1016/j.jri.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  85. Wommack JC, Trzeciakowski JP, Miranda RC, Stowe RP, Ruiz RJ (2018) Micro RNA clusters in maternal plasma are associated with preterm birth and infant outcomes. PLoS ONE 13:e0199029. https://doi.org/10.1371/journal.pone.0199029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hromadnikova I, Kotlabova K, Krofta L (2021) A history of preterm delivery is associated with aberrant postpartal MicroRNA expression profiles in mothers with an absence of other pregnancy-related complications. Int J Mol Sci. https://doi.org/10.3390/ijms22084033

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jarroux J, Morillon A, Pinskaya M (2017) History, discovery, and classification of lncRNAs. Adv Exp Med Biol 1008:1–46. https://doi.org/10.1007/978-981-10-5203-3_1

    Article  CAS  PubMed  Google Scholar 

  88. Mathy NW, Chen XM (2017) Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses. J Biol Chem 292:12375–12382. https://doi.org/10.1074/jbc.R116.760884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Krawczyk M, Emerson BM (2014) p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-κB complexes. J eLife 3:e01776. https://doi.org/10.7554/eLife.01776

    Article  CAS  Google Scholar 

  90. Atianand MK, Hu W, Satpathy AT, Shen Y, Ricci EP, Alvarez-Dominguez JR, Bhatta A, Schattgen SA, McGowan JD, Blin J, Braun JE, Gandhi P, Moore MJ, Chang HY, Lodish HF, Caffrey DR, Fitzgerald KA (2016) A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165:1672–1685. https://doi.org/10.1016/j.cell.2016.05.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rapicavoli NA, Qu K, Zhang J, Mikhail M, Laberge RM, Chang HY (2013) A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. Elife 2:e00762. https://doi.org/10.7554/eLife.00762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Castellanos-Rubio A, Fernandez-Jimenez N, Kratchmarov R, Luo X, Bhagat G, Green PH, Schneider R, Kiledjian M, Bilbao JR, Ghosh S (2016) A long noncoding RNA associated with susceptibility to celiac disease. Science 352:91–95. https://doi.org/10.1126/science.aad0467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang Q, Chao TC, Patil VS, Qin Y, Tiwari SK, Chiou J, Dobin A, Tsai CM, Li Z, Dang J, Gupta S, Urdahl K, Nizet V, Gingeras TR, Gaulton KJ, Rana TM (2019) The long noncoding RNA ROCKI regulates inflammatory gene expression. EMBO J. https://doi.org/10.15252/embj.2018100041

    Article  PubMed  PubMed Central  Google Scholar 

  94. Carpenter S, Aiello D, Atianand MK, Ricci EP, Gandhi P, Hall LL, Byron M, Monks B, Henry-Bezy M, Lawrence JB, O’Neill LA, Moore MJ, Caffrey DR, Fitzgerald KA (2013) A long noncoding RNA mediates both activation and repression of immune response genes. Science 341:789–792. https://doi.org/10.1126/science.1240925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chan J, Atianand M, Jiang Z, Carpenter S, Aiello D, Elling R, Fitzgerald KA, Caffrey DR (2015) Cutting edge: a natural antisense transcript, AS-IL1α, controls inducible transcription of the proinflammatory cytokine IL-1α. J Immunol 195:1359–1363. https://doi.org/10.4049/jimmunol.1500264

    Article  CAS  PubMed  Google Scholar 

  96. Li Z, Chao TC, Chang KY, Lin N, Patil VS, Shimizu C, Head SR, Burns JC, Rana TM (2014) The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc Natl Acad Sci USA 111:1002–1007. https://doi.org/10.1073/pnas.1313768111

    Article  CAS  PubMed  Google Scholar 

  97. Hu G, Gong AY, Wang Y, Ma S, Chen X, Chen J, Su CJ, Shibata A, Strauss-Soukup JK, Drescher KM, Chen XM (2016) LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling. J Immunol 196:2799–2808. https://doi.org/10.4049/jimmunol.1502146

    Article  CAS  PubMed  Google Scholar 

  98. Carpenter S (2016) Determining the function of long noncoding RNA in innate immunity. Methods Mol Biol 1390:183–195. https://doi.org/10.1007/978-1-4939-3335-8_12

    Article  CAS  PubMed  Google Scholar 

  99. Ii NE, Heward JA, Roux B, Tsitsiou E, Fenwick PS, Lenzi L, Goodhead I, Hertz-Fowler C, Heger A, Hall N, Donnelly LE, Sims D, Lindsay MA (2014) Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun 5:3979. https://doi.org/10.1038/ncomms4979

    Article  CAS  Google Scholar 

  100. Li X, Wu Z, Fu X, Han W (2014) lncRNAs: insights into their function and mechanics in underlying disorders. Mutat Res, Rev Mutat Res 762:1–21. https://doi.org/10.1016/j.mrrev.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  101. Chu Y, Liu Z, Liu J, Yu L, Zhang D, Pei F (2020) Characterization of lncRNA-perturbed TLR-signaling network identifies novel lncRNA prognostic biomarkers in colorectal cancer. Front Cell Dev Biol 8:503. https://doi.org/10.3389/fcell.2020.00503

    Article  PubMed  PubMed Central  Google Scholar 

  102. Luo X, Shi Q, Gu Y, Pan J, Hua M, Liu M, Dong Z, Zhang M, Wang L, Gu Y, Zhong J, Zhao X, Jenkins EC, Brown WT, Zhong N (2013) LncRNA pathway involved in premature preterm rupture of membrane (PPROM): an epigenomic approach to study the pathogenesis of reproductive disorders. PLoS ONE 8:e79897. https://doi.org/10.1371/journal.pone.0079897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou G, Holzman C, Chen B, Wang P, Heng YJ, Kibschull M, Lye SJ, Kasten EP (2021) EBF1-correlated long non-coding RNA transcript levels in 3rd trimester maternal blood and risk of spontaneous preterm birth. Reprod Sci 28:541–549. https://doi.org/10.1007/s43032-020-00320-5

    Article  CAS  PubMed  Google Scholar 

  104. Luo X, Pan J, Wang L, Wang P, Zhang M, Liu M, Dong Z, Meng Q, Tao X, Zhao X, Zhong J, Ju W, Gu Y, Jenkins EC, Brown WT, Shi Q, Zhong N (2015) Epigenetic regulation of lncRNA connects ubiquitin-proteasome system with infection-inflammation in preterm births and preterm premature rupture of membranes. BMC Pregnancy Childbirth 15:35. https://doi.org/10.1186/s12884-015-0460-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Burris HH, Just AC, Haviland MJ, Neo DT, Baccarelli AA, Dereix AE, Brennan KJ, Rodosthenous RS, Ralston SJ, Hecht JL, Hacker MR (2018) Long noncoding RNA expression in the cervix mid-pregnancy is associated with the length of gestation at delivery. Epigenetics 13:742–750. https://doi.org/10.1080/15592294.2018.1503490

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cetingoz E, Cam C, Sakallı M, Karateke A, Celik C, Sancak A (2011) Progesterone effects on preterm birth in high-risk pregnancies: a randomized placebo-controlled trial. Arch Gynecol Obstet 283:423–429. https://doi.org/10.1007/s00404-009-1351-2

    Article  CAS  PubMed  Google Scholar 

  107. Velez Edwards DR, Likis FE, Andrews JC, Woodworth AL, Jerome RN, Fonnesbeck CJ, Nikki McKoy J, Hartmann KE (2013) Progestogens for preterm birth prevention: a systematic review and meta-analysis by drug route. Arch Gynecol Obstet 287:1059–1066. https://doi.org/10.1007/s00404-013-2789-9

    Article  CAS  PubMed  Google Scholar 

  108. Derbent A, Simavli S, Gümüş II, Tatli MM, Turhan NO (2011) Nifedipine for the treatment of preterm labor in twin and singleton pregnancies. Arch Gynecol Obstet 284:821–826. https://doi.org/10.1007/s00404-010-1751-3

    Article  CAS  PubMed  Google Scholar 

  109. Namazov A, Grin L, Karakus R, Uludogan M, Ayvaci H (2018) An effect of maternal nifedipine therapy on fetoplacental blood flow: a prospective study. Arch Gynecol Obstet 298:685–688. https://doi.org/10.1007/s00404-018-4839-9

    Article  CAS  PubMed  Google Scholar 

  110. Li L, Kang J, Lei W (2010) Role of Toll-like receptor 4 in inflammation-induced preterm delivery. Mol Human Reprod 16:267–272. https://doi.org/10.1093/molehr/gap106

    Article  CAS  Google Scholar 

  111. Liu H, Redline RW, Han YW (2007) Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J Immunol 179:2501–2508. https://doi.org/10.4049/jimmunol.179.4.2501

    Article  CAS  PubMed  Google Scholar 

  112. Adams Waldorf KM, Persing D, Novy MJ, Sadowsky DW, Gravett MG (2008) Pretreatment with toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys. Reprod Sci 15:121–127. https://doi.org/10.1177/1933719107310992

    Article  CAS  PubMed  Google Scholar 

  113. Wahid HH, Dorian CL, Chin PY, Hutchinson MR, Rice KC, Olson DM, Moldenhauer LM, Robertson SA (2015) Toll-like receptor 4 is an essential upstream regulator of on-time parturition and perinatal viability in mice. Endocrinology 156:3828–3841. https://doi.org/10.1210/en.2015-1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Triggs T, Kumar S, Mitchell M (2020) Experimental drugs for the inhibition of preterm labor. Expert Opin Investig Drugs 29:507–523. https://doi.org/10.1080/13543784.2020.1752661

    Article  CAS  PubMed  Google Scholar 

  115. Ng PY, Ireland DJ, Keelan JA (2015) Drugs to block cytokine signaling for the prevention and treatment of inflammation-induced preterm birth. Front Immunol 6:166. https://doi.org/10.3389/fimmu.2015.00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lappas M, Permezel M, Georgiou HM, Rice GE (2002) Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol Reprod 67:668–673. https://doi.org/10.1095/biolreprod67.2.668

    Article  CAS  PubMed  Google Scholar 

  117. Peltier MR, Tee SC, Kinzler WL, Smulian JC (2009) Effect of sulfasalazine on basal and bacteria-stimulated interleukin-8 production by endocervical epithelial cells. Am J Reprod Immunol 61:190–195. https://doi.org/10.1111/j.1600-0897.2008.00681.x

    Article  CAS  PubMed  Google Scholar 

  118. Jenkins DD, Wiest DB, Mulvihill DM, Hlavacek AM, Majstoravich SJ, Brown TR, Taylor JJ, Buckley JR, Turner RP, Rollins LG, Bentzley JP, Hope KE, Barbour AB, Lowe DW, Martin RH, Chang EY (2016) Fetal and neonatal effects of N-acetylcysteine when used for neuroprotection in maternal chorioamnionitis. J Pediatr 168:67–76. https://doi.org/10.1016/j.jpeds.2015.09.076

    Article  CAS  PubMed  Google Scholar 

  119. Buhimschi CS, Bahtiyar MO, Zhao G, Abdelghany O, Schneider L, Razeq SA, Dulay AT, Lipkind HS, Mieth S, Rogers L, Bhandari V, Buhimschi IA (2021) Antenatal N-acetylcysteine to improve outcomes of premature infants with intra-amniotic infection and inflammation (Triple I): randomized clinical trial. Pediatr Res 89:175–184. https://doi.org/10.1038/s41390-020-01106-w

    Article  CAS  PubMed  Google Scholar 

  120. Keelan JA (2011) Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J Reprod Immunol 88:176–184. https://doi.org/10.1016/j.jri.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  121. Wang J, Luo X, Pan J, Dong X, Tian X, Tu Z, Ju W, Zhang M, Zhong M, De Chen C, Flory M, Wang Y, Ted Brown W, Zhong N (2021) (Epi)genetic variants of the sarcomere-desmosome are associated with premature utero-contraction in spontaneous preterm labor. Environ Int 148:106382. https://doi.org/10.1016/j.envint.2021.106382

    Article  CAS  PubMed  Google Scholar 

  122. Day LJ, Schaa KL, Ryckman KK, Cooper M, Dagle JM, Fong CT, Simhan HN, Merrill DC, Marazita ML, Murray JC, England SK (2011) Single-nucleotide polymorphisms in the KCNN3 gene associate with preterm birth. Reprod Sci 18:286–295. https://doi.org/10.1177/1933719110391277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang L, Zhang W, Zou N, Zhang L (2021) Trophoblasts modulate the Ca(2+) oscillation and contraction of myometrial smooth muscle cells by small extracellular vesicle- (sEV-) mediated exporting of miR-25–3p during premature labor. Oxid Med Cell Longev 2021:8140667. https://doi.org/10.1155/2021/8140667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ehn NL, Cooper ME, Orr K, Shi M, Johnson MK, Caprau D, Dagle J, Steffen K, Johnson K, Marazita ML, Merrill D, Murray JC (2007) Evaluation of fetal and maternal genetic variation in the progesterone receptor gene for contributions to preterm birth. Pediatr Res 62:630–635. https://doi.org/10.1203/PDR.0b013e3181567bfc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kim J, Stirling KJ, Cooper ME, Ascoli M, Momany AM, McDonald EL, Ryckman KK, Rhea L, Schaa KL, Cosentino V, Gadow E, Saleme C, Shi M, Hallman M, Plunkett J, Teramo KA, Muglia LJ, Feenstra B, Geller F, Boyd HA, Melbye M, Marazita ML, Dagle JM, Murray JC (2013) Sequence variants in oxytocin pathway genes and preterm birth: a candidate gene association study. BMC Med Genet 14:77. https://doi.org/10.1186/1471-2350-14-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ryckman KK, Morken NH, White MJ, Velez DR, Menon R, Fortunato SJ, Magnus P, Williams SM, Jacobsson B (2010) Maternal and fetal genetic associations of PTGER3 and PON1 with preterm birth. PLoS ONE 5:e9040. https://doi.org/10.1371/journal.pone.0009040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dominguez-Lopez P, Diaz-Cueto L, Arechavaleta-Velasco M, Caldiño-Soto F, Ulloa-Aguirre A, Arechavaleta-Velasco F (2018) The follicle-stimulating hormone receptor Asn680Ser polymorphism is associated with preterm birth in Hispanic women. J Maternal-fetal Neonatal Med 31:580–585. https://doi.org/10.1080/14767058.2017.1292245

    Article  CAS  Google Scholar 

  128. Rocha FG, Slavin TP, Li D, Tiirikainen MI, Bryant-Greenwood GD (2013) Genetic associations of relaxin: preterm birth and premature rupture of fetal membranes. Am J Obstet Gynecol 209:258.e1–8. https://doi.org/10.1016/j.ajog.2013.05.020

    Article  CAS  PubMed  Google Scholar 

  129. Chai SY, Smith R, Fitter JT, Mitchell C, Pan X, Ilicic M, Maiti K, Zakar T, Madsen G (2014) Increased progesterone receptor A expression in labouring human myometrium is associated with decreased promoter occupancy by the histone demethylase JARID1A. Mol Human Reprod 20:442–453. https://doi.org/10.1093/molehr/gau005

    Article  CAS  Google Scholar 

  130. Kim J, Pitlick MM, Christine PJ, Schaefer AR, Saleme C, Comas B, Cosentino V, Gadow E, Murray JC (2013) Genome-wide analysis of DNA methylation in human amnion. Sci World J 2013:678156. https://doi.org/10.1155/2013/678156

    Article  CAS  Google Scholar 

  131. Krasic J, Fucic A, Sincic N, Sindicic Dessardo N, Starcevic M, Guszak V, Ceppi M, Bruzzone M, Kralik S (2021) Comparison of estradiol, testostosterone, and CYP19 methylation levels between full-term and preterm newborns. Hormone Res Paediatr 94:168–175. https://doi.org/10.1159/000518112

    Article  CAS  Google Scholar 

  132. Williams KC, Renthal NE, Gerard RD, Mendelson CR (2012) The microRNA (miR)-199a/214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor. Mol Endocrinol 26:1857–1867. https://doi.org/10.1210/me.2012-1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Myking S, Myhre R, Gjessing HK, Morken NH, Sengpiel V, Williams SM, Ryckman KK, Magnus P, Jacobsson B (2011) Candidate gene analysis of spontaneous preterm delivery: new insights from re-analysis of a case-control study using case-parent triads and control-mother dyads. BMC Med Genet 12:174. https://doi.org/10.1186/1471-2350-12-174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sundrani D, Narang A, Mehendale S, Joshi S, Chavan-Gautam P (2017) Investigating the expression of MMPs and TIMPs in preterm placenta and role of CpG methylation in regulating MMP-9 expression. IUBMB Life 69:985–993. https://doi.org/10.1002/iub.1687

    Article  CAS  PubMed  Google Scholar 

  135. Lee HJ, Lim SM, Jang HY, Kim YR, Hong JS, Kim GJ (2021) miR-373–3p regulates invasion and migration abilities of trophoblast cells via targeted CD44 and radixin. Int J Mol Sci 22:6260. https://doi.org/10.3390/ijms22126260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Andraweera PH, Dekker GA, Thompson SD, North RA, McCowan LM, Roberts CT (2012) The interaction between the maternal BMI and angiogenic gene polymorphisms associates with the risk of spontaneous preterm birth. Mol Human Reprod 18:459–465. https://doi.org/10.1093/molehr/gas016

    Article  CAS  Google Scholar 

  137. Chen BH, Carmichael SL, Shaw GM, Iovannisci DM, Lammer EJ (2007) Association between 49 infant gene polymorphisms and preterm delivery. Am J Med Genet Part A 143:1990–1996. https://doi.org/10.1002/ajmg.a.31868

    Article  CAS  Google Scholar 

  138. Yu Y, Tsai HJ, Liu X, Mestan K, Zhang S, Pearson C, Ortiz K, Xu X, Zuckerman B, Wang X (2009) The joint association between F5 gene polymorphisms and maternal smoking during pregnancy on preterm delivery. Human Genet 124:659–668. https://doi.org/10.1007/s00439-008-0589-2

    Article  CAS  Google Scholar 

  139. Suh YJ, Park HJ, Lee KA, Lee BE, Ha EH, Kim YJ (2013) Associations between genetic polymorphisms of beta-2 adrenergic receptor and preterm delivery in Korean women. Am J Reprod Immunol 69:85–91. https://doi.org/10.1111/aji.12022

    Article  CAS  PubMed  Google Scholar 

  140. Lee NR, Hwang IW, Kim HJ, Kang YD, Park JW, Jin HJ (2019) Genetic association of angiotensin-converting enzyme (ACE) gene I/D polymorphism with preterm birth in korean women: case-control study and meta-analysis. Medicina (Kaunas) 55:364. https://doi.org/10.3390/medicina55060264

    Article  Google Scholar 

  141. Sundrani DP, Reddy US, Chavan-Gautam PM, Mehendale SS, Chandak GR, Joshi SR (2014) Altered methylation and expression patterns of genes regulating placental angiogenesis in preterm pregnancy. Reprod Sci 21:1508–1517. https://doi.org/10.1177/1933719114532838

    Article  CAS  PubMed  Google Scholar 

  142. Liu F, Wu W, Wu K, Chen Y, Wu H, Wang H, Zhang W (2018) MiR-203 participates in human placental angiogenesis by inhibiting VEGFA and VEGFR2 expression. Reprod Sci 25:358–365. https://doi.org/10.1177/1933719117725817

    Article  CAS  PubMed  Google Scholar 

  143. Zhu Q, Chen Y, Dai J, Wang B, Liu M, Wang Y, Tao J, Li H (2015) Methylenetetrahydrofolate reductase polymorphisms at 3’-untranslated region are associated with susceptibility to preterm birth. Transl Pediatr 4:57–62. https://doi.org/10.3978/j.issn.2224-4336.2015.01.02

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hwang IW, Kang YD, Kwon BN, Hong JH, Han SH, Kim JS, Park JW, Jin HJ (2017) Genetic variations of MTHFR gene and their association with preterm birth in Korean women. Medicina (Kaunas) 53:380–385. https://doi.org/10.1016/j.medici.2018.01.001

    Article  PubMed  Google Scholar 

  145. Mo H, Rao M, Wang G, Long YX, Wang HW, Tang L (2019) Polymorphism of MTHFR 1298A>C in relation to adverse pregnancy outcomes in Chinese populations. Mol Genet Genomic Med 7:e642. https://doi.org/10.1002/mgg3.642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Khot VV, Yadav DK, Shrestha S, Kaur L, Sundrani DP, Chavan-Gautam PM, Mehendale SS, Chandak GR, Joshi SR (2017) Hypermethylated CpG sites in the MTR gene promoter in preterm placenta. Epigenomics 9:985–996. https://doi.org/10.2217/epi-2016-0173

    Article  CAS  PubMed  Google Scholar 

  147. Piñuñuri R, Castaño-Moreno E, Llanos MN, Ronco AM (2020) Epigenetic regulation of folate receptor-α (FOLR1) in human placenta of preterm newborns. Placenta 94:20–25. https://doi.org/10.1016/j.placenta.2020.03.009

    Article  CAS  PubMed  Google Scholar 

  148. Huizing MJ, Cavallaro G, Moonen RM, González-Luis GE, Mosca F, Vento M, Villamor E (2017) Is the C242T polymorphism of the CYBA gene linked with oxidative stress-associated complications of prematurity? Antioxid Redox Signal 27:1432–1438. https://doi.org/10.1089/ars.2017.7042

    Article  CAS  PubMed  Google Scholar 

  149. Lee H, Jaffe AE, Feinberg JI, Tryggvadottir R, Brown S, Montano C, Aryee MJ, Irizarry RA, Herbstman J, Witter FR, Goldman LR, Feinberg AP, Fallin MD (2012) DNA methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with gestational age at birth. Int J Epidemiol 41:188–199. https://doi.org/10.1093/ije/dyr237

    Article  PubMed  PubMed Central  Google Scholar 

  150. Aschrafi A, Kar AN, Natera-Naranjo O, MacGibeny MA, Gioio AE, Kaplan BB (2012) MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci CMLS 69:4017–4027. https://doi.org/10.1007/s00018-012-1064-8

    Article  CAS  PubMed  Google Scholar 

  151. Zhao X, Dong X, Luo X, Pan J, Ju W, Zhang M, Wang P, Zhong M, Yu Y, Brown WT, Zhong N (2017) Ubiquitin-proteasome-collagen (CUP) pathway in preterm premature rupture of fetal membranes. Front Pharmacol 8:310. https://doi.org/10.3389/fphar.2017.00310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks are also extended to colleagues at the Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.

Funding

This article was supposed by the National Natural Fund Project (Grant No.19JSZ01, 81771619).

Author information

Authors and Affiliations

Authors

Contributions

GH and DY wrote the manuscript. XY drew the figures and tables. MZ was in charge of the drug section of the discussion chapter. PY and XC were responsible for the examination and modification of the article. DW conceived the idea and critically reviewed the manuscript.

Corresponding author

Correspondence to Dan Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

No conflict of interest exists in the submission of the manuscript, and it is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, G., Yao, D., Yan, X. et al. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review. Arch Gynecol Obstet 308, 319–339 (2023). https://doi.org/10.1007/s00404-022-06701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-022-06701-2

Keywords

Navigation