Skip to main content
Log in

The colonized microbiota composition in the peritoneal fluid in women with endometriosis

  • Gynecologic Endocrinology and Reproductive Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The imbalance of microbiome in vivo is believed to be involved in the pathogenicity of endometriosis. This study aimed to investigate and analyze the composition of bacterial communities in the peritoneal fluid of women with endometriosis.

Methods

To collect peritoneal fluid samples from women with (N = 36) and without (N = 25) endometriosis in a generalized hospital in Hunan, China during January to December of 2019. Genomic DNA was extracted from peritoneal fluid samples, and targeted amplified for the V4 region of 16S ribosomal RNA gene followed by amplicon sequencing. Non-parametric Wilcoxon rank-sum test and chi‐squared test were used to compare and analysis the difference between groups.

Results

Analysis showed that microbiota diversity was similar in the peritoneal fluid of women with or without endometriosis. Ralstonia mainly dominated in the peritoneal fluid of patients in both groups, with an overall relative abundance of 11.15% (95% CI: 10.51–11.80%) in endometriosis patients, followed by Acinetobacter, Pseudomonas, Asticcacaulis, and Methyloversatilis, with no significant difference between endometriosis patients and the control group. Nevertheless, there were microbes with different abundance in peritoneal fluid of the two groups, and the relative abundance was less than 0.5%. Acidovorax (P = 0.01), Devosia (P = 0.03), Methylobacterium (P = 0.03), Phascolarctobacterium (P = 0.03), and Streptococcus (P = 0.04) were more abundant in the peritoneal fluid of endometriosis patients than the controls, while Brevundimonas (P = 0.01) and Stenotrophomonas (P = 0.04) were less abundant.

Conclusion

The composition of minority microbiota including Acidovorax, Devosia, Methylobacterium, Phascolarctobacterium, and Streptococcus in peritoneal fluid were found to change among women with endometriosis. Further research is needed to explore the mechanisms of these microorganisms in the pathophysiology of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P (2018) Endometriosis. Nat Rev Dis Primers 4:9

    Article  PubMed  Google Scholar 

  2. Vercellini P, Viganò P, Somigliana E, Fedele L (2014) Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol 10:261–275

    Article  CAS  PubMed  Google Scholar 

  3. Sampson JA (1927) Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol 14:422–469

    Article  Google Scholar 

  4. Vallvé-Juanico J, Houshdaran S, Giudice LC (2019) The endometrial immune environment of women with endometriosis. Hum Reprod Update 25:564–591

    Article  PubMed  CAS  Google Scholar 

  5. Liu DT, Hitchcock A (1986) Endometriosis: its association with retrograde menstruation, dysmenorrhoea and tubal pathology. Br J Obstet Gynaecol 93:859–862

    Article  CAS  PubMed  Google Scholar 

  6. Ahn SH, Monsanto SP, Miller C, Singh SS, Thomas R, Tayade C (2015) Pathophysiology and immune dysfunction in endometriosis. Biomed Res Int 2015:795976

    PubMed  PubMed Central  Google Scholar 

  7. Hufnagel D, Li F, Cosar E, Krikun G, Taylor HS (2015) The role of stem cells in the etiology and pathophysiology of endometriosis. Semin Reprod Med 33:333–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chapron C, Marcellin L, Borghese B, Santulli P (2019) Rethinking mechanisms, diagnosis and management of endometriosis. Nat Rev Endocrinol 15:666–682

    Article  PubMed  Google Scholar 

  9. Sun H, Li D, Yuan M, Li Q, Zhen Q, Li N, Wang G (2019) Macrophages alternatively activated by endometriosis-exosomes contribute to the development of lesions in mice. Mol Hum Reprod 25:5–16

    Article  CAS  PubMed  Google Scholar 

  10. Vallvé-Juanico J, Santamaria X, Vo KC, Houshdaran S, Giudice LC (2019) Macrophages display proinflammatory phenotypes in the eutopic endometrium of women with endometriosis with relevance to an infectious etiology of the disease. Fertil Steril 112:1118–1128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jørgensen H, Hill AS, Beste MT, Kumar MP, Chiswick E, Fedorcsak P, Isaacson KB, Lauffenburger DA, Griffith LG, Qvigstad E (2017) Peritoneal fluid cytokines related to endometriosis in patients evaluated for infertility. Fertil Steril 107:1191-1199.e1192

    Article  PubMed  CAS  Google Scholar 

  12. Zhou WJ, Yang HL, Shao J, Mei J, Chang KK, Zhu R, Li MQ (2019) Anti-inflammatory cytokines in endometriosis. Cell Mol Life Sci 76:2111–2132

    Article  CAS  PubMed  Google Scholar 

  13. Young VJ, Ahmad SF, Duncan WC, Horne AW (2017) The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum Reprod Update 23:548–559

    Article  CAS  PubMed  Google Scholar 

  14. Izumi G, Koga K, Takamura M, Makabe T, Satake E, Takeuchi A, Taguchi A, Urata Y, Fujii T, Osuga Y (2018) Involvement of immune cells in the pathogenesis of endometriosis. J Obstet Gynaecol Res 44:191–198

    Article  PubMed  Google Scholar 

  15. Janeway CA, Medzhitov R (2002) Innate Immune Recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  16. Cani PD (2018) Human gut microbiome: hopes, threats and promises. Gut 67:1716–1725

    Article  CAS  PubMed  Google Scholar 

  17. Kwa M, Plottel CS, Blaser MJ, Adams S (2016) The intestinal microbiome and estrogen receptor-positive female breast cancer. J Natl Cancer Inst 2016:108

    Google Scholar 

  18. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM (2017) Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas 103:45–53

    Article  CAS  PubMed  Google Scholar 

  19. Yuan M, Li D, Zhang Z, Sun H, An M, Wang G (2018) Endometriosis induces gut microbiota alterations in mice. Hum Reprod 33:607–616

    Article  CAS  PubMed  Google Scholar 

  20. Khan KN, Fujishita A, Masumoto H, Muto H, Kitajima M, Masuzaki H, Kitawaki J (2016) Molecular detection of intrauterine microbial colonization in women with endometriosis. Eur J Obstet Gynecol Reprod Biol 199:69–75

    Article  CAS  PubMed  Google Scholar 

  21. Khan KN, Fujishita A, Hiraki K, Kitajima M, Nakashima M, Fushiki S, Kitawaki J (2018) Bacterial contamination hypothesis: a new concept in endometriosis. Reprod Med Biol 17:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen C, Song X, Wei W et al (2017) The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun 8:875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wei W, Zhang X, Tang H, Zeng L, Wu R (2020) Microbiota composition and distribution along the female reproductive tract of women with endometriosis. Ann Clin Microbiol Antimicrob 19:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108(Suppl 1):4516–4522

    Article  CAS  PubMed  Google Scholar 

  25. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59

    Article  CAS  PubMed  Google Scholar 

  26. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  28. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee SR, Lee JC, Kim SH, Oh YS, Chae HD, Seo H, Kang CS, Shin TS (2021) Altered composition of microbiota in women with ovarian endometrioma: microbiome analyses of extracellular vesicles in the peritoneal fluid. Int J Mol Sci 2021:22

    Google Scholar 

  32. Akiyama K, Nishioka K, Khan KN, Tanaka Y, Mori T, Nakaya T, Kitawaki J (2019) Molecular detection of microbial colonization in cervical mucus of women with and without endometriosis. Am J Reprod Immunol 82:e13147

    Article  PubMed  CAS  Google Scholar 

  33. Lüderitz O, Freudenberg MA, Galanos C, Lehmann V, Rietschel ET, Shaw DH (1982) Lipopolysaccharides of gram-negative bacteria. Curr Top Membr Transp 17:79–151

    Article  Google Scholar 

  34. Bailey MT, Coe CL (2002) Endometriosis is associated with an altered profile of intestinal microflora in female rhesus monkeys. Hum Reprod 17:1704–1708

    Article  PubMed  Google Scholar 

  35. Khan KN, Kitajima M, Inoue T, Tateishi S, Fujishita A, Nakashima M, Masuzaki H (2013) Additive effects of inflammation and stress reaction on Toll-like receptor 4-mediated growth of endometriotic stromal cells. Hum Reprod 28:2794–2803

    Article  CAS  PubMed  Google Scholar 

  36. Hirata T, Osuga Y, Hirota Y et al (2005) Evidence for the presence of toll-like receptor 4 system in the human endometrium. J Clin Endocrinol Metab 90:548–556

    Article  CAS  PubMed  Google Scholar 

  37. Allhorn S, Böing C, Koch AA, Kimmig R, Gashaw I (2008) TLR3 and TLR4 expression in healthy and diseased human endometrium. Reprod Biol Endocrinol 6:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Khan KN, Kitajima M, Inoue T, Fujishita A, Nakashima M, Masuzaki H (2015) 17β-estradiol and lipopolysaccharide additively promote pelvic inflammation and growth of endometriosis. Reprod Sci 22:585–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Evans SF, Kwok YH, Solterbeck A, Liu J, Hutchinson MR, Hull ML, Rolan PE (2020) Toll-like receptor responsiveness of peripheral blood mononuclear cells in young women with dysmenorrhea. J Pain Res 13:503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Halme J, Becker S, Haskill S (1987) Altered maturation and function of peritoneal macrophages: possible role in pathogenesis of endometriosis. Am J Obstet Gynecol 156:783–789

    Article  CAS  PubMed  Google Scholar 

  41. Khan KN, Kitajima M, Hiraki K, Fujishita A, Sekine I, Ishimaru T, Masuzaki H (2009) Toll-like receptors in innate immunity: role of bacterial endotoxin and toll-like receptor 4 in endometrium and endometriosis. Gynecol Obstet Invest 68:40–52

    Article  CAS  PubMed  Google Scholar 

  42. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  CAS  PubMed  Google Scholar 

  43. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  CAS  PubMed  Google Scholar 

  44. Park JH, Kim YG, Shaw M, Kanneganti TD, Fujimoto Y, Fukase K, Inohara N, Núñez G (2007) Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol 179:514–521

    Article  CAS  PubMed  Google Scholar 

  45. Noh EJ, Kim DJ, Lee JY, Park JH, Kim JS, Han JW, Kim BC, Kim CJ, Lee SK (2019) Ureaplasma urealyticum infection contributes to the development of pelvic endometriosis through toll-like receptor 2. Front Immunol 10:2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Borrelli GM, Kaufmann AM, Abrão MS, Mechsner S (2015) Addition of MCP-1 and MIP-3β to the IL-8 appraisal in peritoneal fluid enhances the probability of identifying women with endometriosis. J Reprod Immunol 109:66–73

    Article  CAS  PubMed  Google Scholar 

  47. Sobstyl M, Niedźwiedzka-Rystwej P, Grywalska E, Korona-Głowniak I, Sobstyl A, Bednarek W, Roliński J (2020) Toll-like receptor 2 expression as a new hallmark of advanced endometriosis. Cells 9:1813

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work was supported by the National Natural Science Foundation of China (Grant 81873826) and the Fundamental Research Funds for the Central Universities of Central South University(reference:2021zzts1061).

Author information

Authors and Affiliations

Authors

Contributions

WY, YW, XC, and XW conceived and designed research; WY, YW, and XW collected data and conducted research; WY and YW analyzed and interpreted data; WY wrote the initial paper; XW and XC revised the paper; and XW had primary responsibility for final content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xianqing Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval

This study was approved by the Ethics Committee of the Second Xiangya Hospital of Central South University, Hunan, China (date of approval: January 2018). All procedures performed in studies involving human participants were in accordance with the ethics standards of the institutional and national research committee (ethical clearance number: 2018065) and with the 1964 Helsinki Declaration and its later amendments or comparable ethics standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Wu, Y., Chai, X. et al. The colonized microbiota composition in the peritoneal fluid in women with endometriosis. Arch Gynecol Obstet 305, 1573–1580 (2022). https://doi.org/10.1007/s00404-021-06338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06338-7

Keywords

Navigation