Skip to main content

Advertisement

Log in

Maternal hemodynamic changes in gestational diabetes: a prospective case–control study

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study is to compare maternal hemodynamic adaptations in gestational diabetes (GDM) versus healthy pregnancies.

Methods

A prospective case–control study was conducted, comparing 69 singleton pregnancies with GDM and 128 controls, recruited between September 2018 and April 2019 in Maternal–Fetal Medicine Unit, Careggi University Hospital, Florence, Italy. Hemodynamic assessment by UltraSonic Cardiac Output Monitor (USCOM) was performed in both groups in four gestational age intervals: 17–20 weeks (only in early GDM cases), 26–30 weeks, 32–35 weeks and 36–39 weeks. We evaluated six hemodynamic parameters comparing GDM cases versus controls: cardiac output (CO), cardiac index (CI), stroke volume (SV), total vascular resistance (TVR), inotropy index (INO) and potential to kinetic energy ratio (PKR).

Results

GDM group had significantly lower values of CO and SV than controls from the early third trimester (26–30 weeks) until term (p < 0.001). CI is significantly lower in GDM women already at the first evaluation (p = 0.002), whereas TVR and PKR were significantly higher in GDM (p < 0.001). GDM women showed also lower INO values than controls in all assessments.

Conclusions

A hemodynamic maternal maladaptation to pregnancy can be detected in GDM women. The effect of hyperglycemia on vascular system or a poor pre-pregnancy cardiovascular (CV) reserve could explain this hemodynamic maladaptation. The abnormal CV response to pregnancy in GDM women may reveal a predisposition to develop CV disease later in life and might help in identifying patients who need a CV follow‐up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metzger BE, Lowe LP, Dyer AR et al (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358:1991–2002. https://doi.org/10.1056/NEJMoa0707943

    Article  PubMed  Google Scholar 

  2. Bryson CL, Ioannou GN, Rulyak SJ, Critchlow C (2003) Association between gestational diabetes and pregnancy-induced hypertension. Am J Epidemiol 158:1148–1153. https://doi.org/10.1093/aje/kwg273

    Article  PubMed  Google Scholar 

  3. Ostlund I, Haglund B, Hanson U (2004) Gestational diabetes and preeclampsia. Eur J Obstet Gynecol Reprod Biol 113:12–16. https://doi.org/10.1016/j.ejogrb.2003.07.001

    Article  PubMed  Google Scholar 

  4. Schneider S, Freerksen N, Röhrig S et al (2012) Gestational diabetes and preeclampsia–similar risk factor profiles? Early Hum Dev 88:179–184. https://doi.org/10.1016/j.earlhumdev.2011.08.004

    Article  PubMed  Google Scholar 

  5. Kessous R, Shoham-Vardi I, Pariente G et al (2013) An association between gestational diabetes mellitus and long-term maternal cardiovascular morbidity. Heart 99:1118–1121. https://doi.org/10.1136/heartjnl-2013-303945

    Article  PubMed  Google Scholar 

  6. Tobias DK, Stuart JJ, Li S et al (2017) Association of history of gestational diabetes with long-term cardiovascular disease risk in a large prospective cohort of US women. JAMA Intern Med 177:1735–1742. https://doi.org/10.1001/jamainternmed.2017.2790

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mosca L, Benjamin EJ, Berra K et al (2011) Effectiveness-based guidelines for the prevention of cardiovascular disease in women–2011 update: a guideline from the American Heart Association. J Am Coll Cardiol 57:1404–1423. https://doi.org/10.1016/j.jacc.2011.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weissgerber TL, Mudd LM (2015) Preeclampsia and diabetes. Curr Diab Rep 15:9. https://doi.org/10.1007/s11892-015-0579-4

    Article  CAS  PubMed  Google Scholar 

  9. Thilaganathan B (2018) Pre-eclampsia and the cardiovascular-placental axis. Ultrasound Obstet Gynecol 51:714–717. https://doi.org/10.1002/uog.19081

    Article  CAS  PubMed  Google Scholar 

  10. Foo FL, Mahendru AA, Masini G et al (2018) Association between prepregnancy cardiovascular function and subsequent preeclampsia or fetal growth restriction. Hypertens (Dallas, Tex 1979) 72:442–450

    Article  CAS  Google Scholar 

  11. Valensise H, Vasapollo B, Gagliardi G, Novelli GP (2008) Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertens (Dallas, Tex 1979) 52:873–880

    Article  CAS  Google Scholar 

  12. Melchiorre K, Sharma R, Thilaganathan B (2014) Cardiovascular implications in preeclampsia: an overview. Circulation 130:703–714. https://doi.org/10.1161/CIRCULATIONAHA.113.003664

    Article  PubMed  Google Scholar 

  13. Tiralongo GM, Pisani I, Vasapollo B et al (2018) Effect of a nitric oxide donor on maternal hemodynamics in fetal growth restriction. Ultrasound Obstet Gynecol 51:514–518. https://doi.org/10.1002/uog.17454

    Article  CAS  PubMed  Google Scholar 

  14. Mecacci F, Avagliano L, Lisi F et al (2020) Fetal growth restriction: does an integrated maternal hemodynamic-placental model fit better? Reprod Sci. https://doi.org/10.1007/s43032-020-00393-2

    Article  PubMed  Google Scholar 

  15. Savvidou MD, Anderson JM, Kaihura C, Nicolaides KH (2010) Maternal arterial stiffness in pregnancies complicated by gestational and type 2 diabetes mellitus. Am J Obstet Gynecol 203:274.e1–7. https://doi.org/10.1016/j.ajog.2010.06.021

    Article  Google Scholar 

  16. Moodley S, Arunamata A, Stauffer KJ et al (2018) Maternal arterial stiffness and fetal cardiovascular physiology in diabetic pregnancy. Ultrasound Obstet Gynecol 52:654–661. https://doi.org/10.1002/uog.17528

    Article  CAS  PubMed  Google Scholar 

  17. Metzger BE, Gabbe SG, Persson B et al (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33:676–682. https://doi.org/10.2337/dc09-1848

    Article  CAS  PubMed  Google Scholar 

  18. Kager CCM, Dekker GA, Stam MC (2009) Measurement of cardiac output in normal pregnancy by a non-invasive two-dimensional independent Doppler device. Aust N Z J Obstet Gynaecol 49:142–144. https://doi.org/10.1111/j.1479-828x.2009.00948.x

    Article  PubMed  Google Scholar 

  19. Smith BE, Madigan VM (2013) Non-invasive method for rapid bedside estimation of inotropy: theory and preliminary clinical validation. Br J Anaesth 111:580–588. https://doi.org/10.1093/bja/aet118

    Article  CAS  PubMed  Google Scholar 

  20. Osman MW, Nath M, Khalil A et al (2018) Haemodynamic differences amongst women who were screened for gestational diabetes in comparison to healthy controls. Pregnancy Hypertens 14:23–28. https://doi.org/10.1016/j.preghy.2018.07.007

    Article  PubMed  Google Scholar 

  21. Webber J, Charlton M, Johns N (2015) Diabetes in pregnancy: management of diabetes and its complications from preconception to the postnatal period (NG3). Br J Diabetes 15:107–111

    Article  Google Scholar 

  22. Heitritter SM, Solomon CG, Mitchell GF et al (2005) Subclinical inflammation and vascular dysfunction in women with previous gestational diabetes mellitus. J Clin Endocrinol Metab 90:3983–3988. https://doi.org/10.1210/jc.2004-2494

    Article  CAS  PubMed  Google Scholar 

  23. Kramer CK, Campbell S, Retnakaran R (2019) Gestational diabetes and the risk of cardiovascular disease in women: a systematic review and meta-analysis. Diabetologia 62:905–914. https://doi.org/10.1007/s00125-019-4840-2

    Article  PubMed  Google Scholar 

  24. Retnakaran R, Shah BR (2019) Glucose screening in pregnancy and future risk of cardiovascular disease in women: a retrospective, population-based cohort study. Lancet Diabetes Endocrinol 7:378–384. https://doi.org/10.1016/S2213-8587(19)30077-4

    Article  PubMed  Google Scholar 

  25. Franzago M, Fraticelli F, Stuppia L, Vitacolonna E (2019) Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics 14:215–235. https://doi.org/10.1080/15592294.2019.1582277

    Article  PubMed  PubMed Central  Google Scholar 

  26. Monteiro LJ, Norman JE, Rice GE, Illanes SE (2016) Fetal programming and gestational diabetes mellitus. Placenta 48(Suppl 1):S54–S60. https://doi.org/10.1016/j.placenta.2015.11.015

    Article  CAS  PubMed  Google Scholar 

  27. Rao R, Sen S, Han B et al (2014) Gestational diabetes, preeclampsia and cytokine release: similarities and differences in endothelial cell function. Adv Exp Med Biol 814:69–75. https://doi.org/10.1007/978-1-4939-1031-1_6

    Article  CAS  PubMed  Google Scholar 

  28. Carpenter MW (2007) Gestational diabetes, pregnancy hypertension, and late vascular disease. Diabetes Care 30(Suppl 2):S246–S250. https://doi.org/10.2337/dc07-s224

    Article  CAS  PubMed  Google Scholar 

  29. Mastrogiannis DS, Spiliopoulos M, Mulla W, Homko CJ (2009) Insulin resistance: the possible link between gestational diabetes mellitus and hypertensive disorders of pregnancy. Curr Diab Rep 9:296–302. https://doi.org/10.1007/s11892-009-0046-1

    Article  CAS  PubMed  Google Scholar 

  30. Yogev C, Hod, et al (2010) Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study: preeclampsia. Am J Obstet Gynecol 202:255.e1–7. https://doi.org/10.1016/j.ajog.2010.01.024

    Article  CAS  Google Scholar 

  31. Hauth JC, Clifton RG, Roberts JM et al (2011) Maternal insulin resistance and preeclampsia. Am J Obstet Gynecol 204:327.e1–6. https://doi.org/10.1016/j.ajog.2011.02.024

    Article  CAS  Google Scholar 

  32. Khalil A, Garcia-Mandujano R, Chiriac R et al (2012) Maternal hemodynamics at 11–13 weeks’ gestation in gestational diabetes mellitus. Fetal Diagn Ther 31:216–220. https://doi.org/10.1159/000336692

    Article  PubMed  Google Scholar 

  33. Hartling L, Dryden DM, Guthrie A et al (2013) Benefits and harms of treating gestational diabetes mellitus: a systematic review and meta-analysis for the U.S. Preventive Services Task Force and the National Institutes of Health Office of Medical Applications of Research. Ann Intern Med 159:123–129. https://doi.org/10.7326/0003-4819-159-2-201307160-00661

    Article  PubMed  Google Scholar 

  34. Spaight C, Gross J, Horsch A, Puder JJ (2016) Gestational diabetes mellitus. Endocr Dev 31:163–178. https://doi.org/10.1159/000439413

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors have no acknowledgements to make.

Funding

The author declares no funding sources.

Author information

Authors and Affiliations

Authors

Contributions

FM contributed to the conception and design of the study. SC, FL, GM, SC, MPR, SS, IP contributed to patient recruitment and collection of data. SO, SV, GM and SC collaborated on data analysis and first draft writing. FM substantially contributed to the interpretation of data. FM, FP and HV revised the manuscript for important intellectual content. All authors approved the final version.

Corresponding author

Correspondence to Silvia Vannuccini.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was approved by the Careggi University Hospital Research Ethics Committee in September 2018 (study number 13623).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mecacci, F., Ottanelli, S., Vannuccini, S. et al. Maternal hemodynamic changes in gestational diabetes: a prospective case–control study. Arch Gynecol Obstet 306, 357–363 (2022). https://doi.org/10.1007/s00404-021-06288-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06288-0

Keywords