Skip to main content

Advertisement

Log in

Principles of first trimester screening in the age of non-invasive prenatal diagnosis: screening for other major defects and pregnancy complications

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

First trimester risk assessment plays a major role in the contemporary pregnancy care. It has evolved significantly since its introduction in the 1990s when it essentially consisted of just the nuchal translucency measurement. Today, it involves the measurement of several biophysical and biochemical markers and can assess the risk for a wide array of major chromosomal and non-chromosomal defects as well as other pregnancy-related complications.

Methods

A search of the Medline and Embase databases was done looking for articles about first trimester screening. We performed a detailed review of the literature to evaluate the screening tests currently available and their respective test performance.

Results

The detailed ultrasound examination results in the detection of about half of major structural defects, determination of a very accurate gestational age, and identification of multiple pregnancies as well as their chorionicity. In addition, risk assessment for preeclampsia and early IUGR can be established at this stage. In case of an increased risk, the daily use of low-dose aspirin can be offered at a point in pregnancy when it still can have a positive impact. Additional screening tests for gestational diabetes and macrosomia are available.

Conclusion

Contemporary first trimester screening is essential to establish an individual risk profile and can be used to tailor the pregnancy care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nicolaides KH (2011) A model for a new pyramid of prenatal care based on the 11 to 13 weeks’ assessment. Prenat Diagn 31:3–6. doi:10.1002/pd.2685

    Article  PubMed  Google Scholar 

  2. Rossi AC, Prefumo F (2013) Accuracy of ultrasonography at 11–14 weeks of gestation for detection of fetal structural anomalies: a systematic review—PubMed—NCBI. Obstet Gynecol 122:1160–1167. doi:10.1097/AOG.0000000000000015

    Article  PubMed  Google Scholar 

  3. Salomon LJ, Alfirevic Z, Bilardo CM et al (2013) ISUOG practice guidelines: performance of first-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol 41:102–113. doi:10.1002/uog.12342

    Article  CAS  PubMed  Google Scholar 

  4. von Kaisenberg C, Chaoui R, Häusler M et al (2016) Quality requirements for the early fetal ultrasound assessment at 11–13 + 6 weeks of gestation (DEGUM levels II and III). Ultraschall Med 37:297–302. doi:10.1055/s-0042-105514

    Article  Google Scholar 

  5. Karim JN, Roberts NW, Salomon LJ, Papageorghiou AT (2016) Systematic review of first trimester ultrasound screening in detecting fetal structural anomalies and factors affecting screening performance. Ultrasound Obstet Gynecol. doi:10.1002/uog.17246

    PubMed  Google Scholar 

  6. Syngelaki A, Chelemen T, Dagklis T et al (2011) Challenges in the diagnosis of fetal non-chromosomal abnormalities at 11–13 weeks. Prenat Diagn 31:90–102. doi:10.1002/pd.2642

    Article  PubMed  Google Scholar 

  7. Becker R, Wegner RD (2006) Detailed screening for fetal anomalies and cardiac defects at the 11–13-week scan. Ultrasound Obstet Gynecol 27:613–618. doi:10.1002/uog.2709

    Article  CAS  PubMed  Google Scholar 

  8. Kenkhuis MJA, Bakker M, Bardi F et al (2017) Yield of a 12–13 week scan for the early diagnosis of fetal congenital anomalies in the cell-free DNA era. Ultrasound Obstet Gynecol. doi:10.1002/uog.17487

    PubMed  Google Scholar 

  9. Baer RJ, Norton ME, Shaw GM et al (2014) Risk of selected structural abnormalities in infants after increased nuchal translucency measurement. Am J Obstet Gynecol 211(675):e1–e19. doi:10.1016/j.ajog.2014.06.025

    Google Scholar 

  10. Bilardo CM, Müller MA, Pajkrt E et al (2007) Increased nuchal translucency thickness and normal karyotype: time for parental reassurance. Ultrasound Obstet Gynecol 30:11–18. doi:10.1002/uog.4044

    Article  CAS  PubMed  Google Scholar 

  11. Souka AP, Von Kaisenberg CS, Hyett JA et al (2005) Increased nuchal translucency with normal karyotype. YMOB 192:1005–1021. doi:10.1016/j.ajog.2004.12.093

    Google Scholar 

  12. Fuchs IB, Müller H, Abdul Khaliq H et al (2007) Immediate and long-term outcomes in children with prenatal diagnosis of selected isolated congenital heart defects. Ultrasound Obstet Gynecol 29:38–43. doi:10.1002/uog.3900

    Article  CAS  PubMed  Google Scholar 

  13. Llurba E, Syngelaki A, Sánchez O et al (2013) Maternal serum placental growth factor at 11–13 weeks’ gestation and fetal cardiac defects. Ultrasound Obstet Gynecol 42:169–174. doi:10.1002/uog.12346

    Article  CAS  PubMed  Google Scholar 

  14. Borelli M, Baer RJ, Chambers CD et al (2016) Critical congenital heart defects and abnormal levels of routinely collected first- and second-trimester biomarkers. Am J Med Genet 173:368–374. doi:10.1002/ajmg.a.38013

    Article  PubMed  Google Scholar 

  15. Chelemen T, Syngelaki A, Maiz N et al (2011) Contribution of ductus venosus Doppler in first-trimester screening for major cardiac defects. Fetal Diagn Ther 29:127–134. doi:10.1159/000322138

    Article  PubMed  Google Scholar 

  16. Atzei A, Gajewska K, Huggon IC et al (2005) Relationship between nuchal translucency thickness and prevalence of major cardiac defects in fetuses with normal karyotype. Ultrasound Obstet Gynecol 26:154–157. doi:10.1002/uog.1936

    Article  CAS  PubMed  Google Scholar 

  17. Pereira S, Ganapathy R, Syngelaki A et al (2011) Contribution of fetal tricuspid regurgitation in first-trimester screening for major cardiac defects. Obstet Gynecol 117:1384–1391. doi:10.1097/AOG.0b013e31821aa720

    Article  PubMed  Google Scholar 

  18. Persico N, Moratalla J, Lombardi CM et al (2011) Fetal echocardiography at 11–13 weeks by transabdominal high-frequency ultrasound. Ultrasound Obstet Gynecol 37:296–301. doi:10.1002/uog.8934

    Article  CAS  PubMed  Google Scholar 

  19. Wiechec M, Knafel A, Nocun A (2015) Prenatal detection of congenital heart defects at the 11- to 13-week scan using a simple color Doppler protocol including the 4-chamber and 3-vessel and trachea views. J Ultrasound Med 34:585–594. doi:10.7863/ultra.34.4.585

    Article  PubMed  Google Scholar 

  20. Domröse CM, Bremer S, Buczek C et al (2016) Termination of pregnancy after prenatal diagnosis of spina bifida: a German perspective. Arch Gynecol Obstet 294:731–737. doi:10.1007/s00404-016-4032-y

    Article  PubMed  Google Scholar 

  21. Chaoui R, Benoit B, Mitkowska Wozniak H et al (2009) Assessment of intracranial translucency (IT) in the detection of spina bifida at the 11–13-week scan. Ultrasound Obstet Gynecol 34:249–252. doi:10.1002/uog.7329

    Article  CAS  PubMed  Google Scholar 

  22. Maruotti GM, Saccone G, D’Antonio F et al (2016) Diagnostic accuracy of intracranial translucency in detecting spina bifida: a systematic review and meta-analysis. Prenat Diagn 36:991–996. doi:10.1002/pd.4883

    Article  PubMed  Google Scholar 

  23. Chen F, Gerhardt J, Entezami M et al (2017) Detection of spina bifida by first trimester screening—results of the prospective multicenter Berlin IT-study. Ultraschall Med 38:151–157. doi:10.1055/s-0034-1399483

    CAS  PubMed  Google Scholar 

  24. Engels AC, Joyeux L, Brantner C et al (2016) Sonographic detection of central nervous system defects in the first trimester of pregnancy. Prenat Diagn 36:266–273. doi:10.1002/pd.4770

    Article  CAS  PubMed  Google Scholar 

  25. Khalil A, Coates A, Papageorghiou A et al (2013) Biparietal diameter at 11–13 weeks’ gestation in fetuses with open spina bifida. Ultrasound Obstet Gynecol 42:409–415. doi:10.1002/uog.12420

    CAS  PubMed  Google Scholar 

  26. Volpe P, Contro E, Fanelli T et al (2016) Appearance of fetal posterior fossa at 11–14 weeks in fetuses with Dandy–Walker malformation or chromosomal anomalies. Ultrasound Obstet Gynecol 47:720–725. doi:10.1002/uog.14883

    Article  CAS  PubMed  Google Scholar 

  27. Martinez-Ten P, Illescas T, Adiego B et al (2017) Non-visualization of choroid plexus of the fourth ventricle as a first-trimester predictor of posterior fossa anomalies and chromosomal defects: a three‐dimensional ultrasound study—PubMed—NCBI. Ultrasound Obstet Gynecol. doi:10.1002/uog.17445

    PubMed  Google Scholar 

  28. Maarse W, Rozendaal AM, Pajkrt E et al (2012) A systematic review of associated structural and chromosomal defects in oral clefts: when is prenatal genetic analysis indicated? J Med Genet 49:490–498. doi:10.1136/jmedgenet-2012-101013

    Article  PubMed  Google Scholar 

  29. Sepulveda W, Wong AE, Martinez-Ten P, Perez-Pedregosa J (2010) Retronasal triangle: a sonographic landmark for the screening of cleft palate in the first trimester. Ultrasound Obstet Gynecol 35:7–13. doi:10.1002/uog.7484

    Article  CAS  PubMed  Google Scholar 

  30. Chaoui R, Orosz G, Heling KS et al (2015) Maxillary gap at 11–13 weeks’ gestation: marker of cleft lip and palate. Ultrasound Obstet Gynecol 46:665–669. doi:10.1002/uog.15675

    Article  CAS  PubMed  Google Scholar 

  31. Hoopmann M, Sonek J, Esser T et al (2016) Frontal space distance in facial clefts and retrognathia at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol 48:171–176. doi:10.1002/uog.15823

    Article  CAS  PubMed  Google Scholar 

  32. Rempen A, Chaoui R, Häusler M et al (2016) Quality requirements for ultrasound examination in early pregnancy (DEGUM level I) between 4 + 0 and 13 + 6 weeks of gestation. Ultraschall Med 37:579–583. doi:10.1055/s-0042-115581

    Article  CAS  PubMed  Google Scholar 

  33. Napolitano R, Dhami J, Ohuma EO et al (2014) Pregnancy dating by fetal crown–rump length: a systematic review of charts. BJOG Int J Obstet Gynaecol 121:556–565. doi:10.1111/1471-0528.12478

    Article  CAS  Google Scholar 

  34. Francisco C, Wright D, Benkő Z et al (2017) Hidden high rate of preeclampsia in twin compared to singleton pregnancies. Ultrasound Obstet Gynecol. doi:10.1002/uog.17470

    Google Scholar 

  35. Sebire NJ, Snijders RJ, Hughes K et al (1997) The hidden mortality of monochorionic twin pregnancies. Br J Obstet Gynaecol 104:1203–1207

    Article  CAS  PubMed  Google Scholar 

  36. Lewi L, Gucciardo L, Van Mieghem T et al (2010) Monochorionic diamniotic twin pregnancies: natural history and risk stratification. Fetal Diagn Ther 27:121–133. doi:10.1159/000313300

    Article  PubMed  Google Scholar 

  37. Khalil A, Rodgers M, Baschat A et al (2016) ISUOG practice guidelines: role of ultrasound in twin pregnancy. Ultrasound Obstet Gynecol 47:247–263. doi:10.1002/uog.15821

    Article  CAS  PubMed  Google Scholar 

  38. Sepulveda W, Sebire NJ, Hughes K et al (1996) The lambda sign at 10–14 weeks of gestation as a predictor of chorionicity in twin pregnancies. Ultrasound Obstet Gynecol 7:421–423. doi:10.1046/j.1469-0705.1996.07060421.x

    Article  CAS  PubMed  Google Scholar 

  39. Kagan KO, Gazzoni A, Sepulveda-Gonzalez G et al (2007) Discordance in nuchal translucency thickness in the prediction of severe twin-to-twin transfusion syndrome. Ultrasound Obstet Gynecol 29:527–532. doi:10.1002/uog.4006

    Article  CAS  PubMed  Google Scholar 

  40. Matias A, Montenegro N, Severo M (2010) Screening for twin-twin transfusion syndrome at 11–14 weeks of pregnancy: the key role of ductus venosus blood flow assessment. Ultrasound Obstet Gynecol 35:142–148. doi:10.1002/uog.7533

    Article  CAS  PubMed  Google Scholar 

  41. Thilaganathan B (2017) Placental syndromes: getting to the heart of the matter. Ultrasound Obstet Gynecol 49:7–9. doi:10.1002/uog.17378

    Article  CAS  PubMed  Google Scholar 

  42. Mol BWJ, Roberts CT, Thangaratinam S et al (2016) Pre-eclampsia. Lancet 387:999–1011. doi:10.1016/S0140-6736(15)00070-7

    Article  PubMed  Google Scholar 

  43. Roberge S, Odibo AO, Bujold E (2016) Aspirin for the prevention of preeclampsia and intrauterine growth restriction. Clin Lab Med 36:319–329. doi:10.1016/j.cll.2016.01.013

    Article  PubMed  Google Scholar 

  44. O’Gorman N, Wright D, Poon LC et al (2017) Multicenter screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: comparison to NICE guidelines and ACOG recommendations. Ultrasound Obstet Gynecol. doi:10.1002/uog.17455

    Google Scholar 

  45. Scazzocchio E, Crovetto F, Triunfo S et al (2017) Validation of a first-trimester screening model for pre-eclampsia in an unselected population. Ultrasound Obstet Gynecol 49:188–193. doi:10.1002/uog.15982

    Article  CAS  PubMed  Google Scholar 

  46. Park F, Russo K, Williams P et al (2015) Prediction and prevention of early-onset pre-eclampsia: impact of aspirin after first-trimester screening. Ultrasound Obstet Gynecol 46:419–423. doi:10.1002/uog.14819

    Article  CAS  PubMed  Google Scholar 

  47. O’Gorman N, Wright D, Poon LC et al (2017) Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol 49:751–755. doi:10.1002/uog.17399

    Article  PubMed  Google Scholar 

  48. Wright D, Akolekar R, Syngelaki A et al (2012) A competing risks model in early screening for preeclampsia. Fetal Diagn Ther 32:171–178. doi:10.1159/000338470

    Article  PubMed  Google Scholar 

  49. Poon LC, Nicolaides KH (2014) First-trimester maternal factors and biomarker screening for preeclampsia. Prenat Diagn 34:618–627. doi:10.1002/pd.4397

    PubMed  Google Scholar 

  50. Rolnik DL, Wright D, Poon LC et al (2017) Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med NEJMoa. doi:10.1056/NEJMoa1704559

    Google Scholar 

  51. Roberge S, Nicolaides K, Demers S et al (2017) The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis. Am J Obstet Gynecol 216(110–120):e6. doi:10.1016/j.ajog.2016.09.076

    Google Scholar 

  52. Irgens HU, Reisaeter L, Irgens LM, Lie RT (2001) Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ 323:1213–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nardozza LMM, Caetano ACR, Zamarian ACP et al (2017) Fetal growth restriction: current knowledge. Arch Gynecol Obstet 295:1061–1077. doi:10.1007/s00404-017-4341-9

    Article  PubMed  Google Scholar 

  54. Poon LCY, Syngelaki A, Akolekar R et al (2013) Combined screening for preeclampsia and small for gestational age at 11–13 weeks. Fetal Diagn Ther 33:16–27. doi:10.1159/000341712

    Article  PubMed  Google Scholar 

  55. Bujold E, Roberge S, Lacasse Y et al (2010) Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol 116:402–414. doi:10.1097/AOG.0b013e3181e9322a

    Article  PubMed  Google Scholar 

  56. Kagan KO, Sonek J (2015) How to measure cervical length. Ultrasound Obstet Gynecol 45:358–362. doi:10.1002/uog.14742

    Article  CAS  PubMed  Google Scholar 

  57. Greco E, Gupta R, Syngelaki A et al (2012) First-trimester screening for spontaneous preterm delivery with maternal characteristics and cervical length. Fetal Diagn Ther 31:154–161. doi:10.1159/000335686

    Article  PubMed  Google Scholar 

  58. Retzke JD, Sonek JD, Lehmann J et al (2013) Comparison of three methods of cervical measurement in the first trimester: single-line, two-line, and tracing. Prenat Diagn 33:262–268. doi:10.1002/pd.4056

    Article  CAS  PubMed  Google Scholar 

  59. Syngelaki A, Pastides A, Kotecha R et al (2015) First-trimester screening for gestational diabetes mellitus based on maternal characteristics and history. Fetal Diagn Ther 38:14–21. doi:10.1159/000369970

    Article  PubMed  Google Scholar 

  60. Nanda S, Akolekar R, Sarquis R et al (2011) Maternal serum adiponectin at 11 to 13 weeks of gestation in the prediction of macrosomia. Prenat Diagn 31:479–483. doi:10.1002/pd.2723

    Article  CAS  PubMed  Google Scholar 

  61. Frick AP, Syngelaki A, Zheng M et al (2016) Prediction of large-for-gestational-age neonates: screening by maternal factors and biomarkers in the three trimesters of pregnancy. Ultrasound Obstet Gynecol 47:332–339. doi:10.1002/uog.15780

    Article  CAS  PubMed  Google Scholar 

  62. Syngelaki A, Nicolaides KH, Balani J et al (2016) Metformin versus placebo in obese pregnant women without diabetes mellitus. N Engl J Med 374:434–443. doi:10.1056/NEJMoa1509819

    Article  CAS  PubMed  Google Scholar 

  63. Revello MG, Tibaldi C, Masuelli G et al (2015) Prevention of primary cytomegalovirus infection in pregnancy. EBIOM 2:1205–1210. doi:10.1016/j.ebiom.2015.08.003

    Article  Google Scholar 

  64. Kagan KO, Hamprecht K (2017) Cytomegalovirus infection in pregnancy. Arch Gynecol Obstet 296:15–26. doi:10.1007/s00404-017-4380-2

    Article  PubMed  Google Scholar 

Download references

Author contribution

KOK, JS, PW, and MH: all four authors have worked together in terms of the project development, manuscript writing, and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Oliver Kagan.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Ethical approval

This is a review of the actual literature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagan, K.O., Sonek, J., Wagner, P. et al. Principles of first trimester screening in the age of non-invasive prenatal diagnosis: screening for other major defects and pregnancy complications. Arch Gynecol Obstet 296, 635–643 (2017). https://doi.org/10.1007/s00404-017-4460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-017-4460-3

Keywords