Skip to main content

Advertisement

Log in

Alteration of STR profiles in ovarian carcinoma cells during primary culture

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Cell authentication is a necessary procedure to avoid scientific data from cell culture experiments with cross-contamination or false classification. A genetic fingerprint pattern of a specimen by short tandem repeats (STR) is self-evident. Due to high amount of chromosomal rearrangements, known in epithelia ovary cancer cells and the instable STR pattern described in other tumour entities like leukaemia, this study explores the suitability of STR profiling for primary cultured epithelial ovary cancer cells.

Methods

STR profiles of epithelial ovary cancers of 16 patients were compared with corresponding blood and corresponding primary cell cultures. The primary cell cultures of epithelial ovary tumours were passaged up to 28 times. In between, cultures were cryo conserved and recultured again, two to five times per patient.

Results

In two cases, the STR pattern of tumour lost alleles (1/16 and 3/16) in comparison of corresponding STR-pattern from blood. In comparison to blood, cell culture of a third case, lost four alleles (4/16) accompanied with morphologic changes after 14th passage. It is equal after cryo conservation of the seventh passage from the same patient. The only changes in STR profiles we recognized are losses of alleles. Remaining STR markers allow authentication.

Conclusions

Very likely, the allelic drop-outs beyond passage 14 assume complex genetic losses of heterozygosis resulting in changed growth behaviour of cells. All other STR-profiles of remaining 15 patients analysed in this study are stable over all passages and freeze–thaw processes. Thus, ovary cancer cell cultures in research should be authenticated by STR-profile in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alston-Roberts C, Barallon R, Bauer SR, Butler J, Capes-Davis A, Dirks WG, Elmore E, Furtado M, Kerrigan L, Kline MC, Kohara A, Los GV, MacLeod RA, Masters JR, Nardone M, Nardone RM, Nims RW, Price PJ, Reid YA, Shewale J, Steuer AF, Storts DR, Sykes G, Taraporewala Z, Thomson J (2010) Cell line misidentification: the beginning of the end. Nat Rev Cancer 10(6):441–448. doi:10.1038/nrc2852

    Article  Google Scholar 

  2. Nims RW, Sykes G, Cottrill K, Ikonomi P, Elmore E (2010) Short tandem repeat profiling: part of an overall strategy for reducing the frequency of cell misidentification. In Vitro Cell Dev Biol Anim 46(10):811–819. doi:10.1007/s11626-010-9352-9

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sturzl M, Gaus D, Dirks WG, Ganem D, Jochmann R (2013) Kaposi’s sarcoma-derived cell line SLK is not of endothelial origin, but is a contaminant from a known renal carcinoma cell line. Int J Cancer J Int Cancer 132(8):1954–1958. doi:10.1002/ijc.27849

    Article  Google Scholar 

  4. Freedman LP, Gibson MC, Ethier SP, Soule HR, Neve RM, Reid YA (2015) Reproducibility: changing the policies and culture of cell line authentication. Nat Meth 12(6):493–497. doi:10.1038/nmeth.3403

    Article  CAS  Google Scholar 

  5. Masters JR, Thomson JA, Daly-Burns B, Reid YA, Dirks WG, Packer P, Toji LH, Ohno T, Tanabe H, Arlett CF, Kelland LR, Harrison M, Virmani A, Ward TH, Ayres KL, Debenham PG (2001) Short tandem repeat profiling provides an international reference standard for human cell lines. Proc Natl Acad Sci USA 98(14):8012–8017. doi:10.1073/pnas.121616198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Korch C, Spillman MA, Jackson TA, Jacobsen BM, Murphy SK, Lessey BA, Jordan VC, Bradford AP (2012) DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination. Gynecol Oncol 127(1):241–248. doi:10.1016/j.ygyno.2012.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lorenzi PL, Reinhold WC, Varma S, Hutchinson AA, Pommier Y, Chanock SJ, Weinstein JN (2009) DNA fingerprinting of the NCI-60 cell line panel. Mol Cancer Ther 8(4):713–724. doi:10.1158/1535-7163.MCT-08-0921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kurbacher CM, Korn C, Dexel S, Schween U, Kurbacher JA, Reichelt R, Arenz PN (2011) Isolation and culture of ovarian cancer cells and cell lines. Methods Mol Biol 731:161–180. doi:10.1007/978-1-61779-080-5_15

    Article  CAS  PubMed  Google Scholar 

  9. Parson W, Kirchebner R, Muhlmann R, Renner K, Kofler A, Schmidt S, Kofler R (2005) Cancer cell line identification by short tandem repeat profiling: power and limitations. FASEB J Off Publ Fed Am Soc Exp Biol 19(3):434–436. doi:10.1096/fj.04-3062fje

    CAS  Google Scholar 

  10. Hughes-Stamm SR, Ashton KJ, van Daal A (2011) Assessment of DNA degradation and the genotyping success of highly degraded samples. Int J Legal Med 125(3):341–348. doi:10.1007/s00414-010-0455-3

    Article  PubMed  Google Scholar 

  11. Wang DY, Chang CW, Lagace RE, Calandro LM, Hennessy LK (2012) Developmental validation of the AmpFlSTR(R) identifiler(R) plus PCR amplification Kit: an established multiplex assay with improved performance. J Forensic Sci 57(2):453–465. doi:10.1111/j.1556-4029.2011.01963.x

    Article  PubMed  Google Scholar 

  12. Schwark T, Heinrich A, von Wurmb-Schwark N (2011) Genetic identification of highly putrefied bodies using DNA from soft tissues. Int J Legal Med 125(6):891–894. doi:10.1007/s00414-010-0537-2

    Article  PubMed  Google Scholar 

  13. Schwark T, Heinrich A, Preusse-Prange A, von Wurmb-Schwark N (2011) Reliable genetic identification of burnt human remains. Forensic Sci Int Genet 5(5):393–399. doi:10.1016/j.fsigen.2010.08.008

    Article  CAS  PubMed  Google Scholar 

  14. Capes-Davis A, Reid YA, Kline MC, Storts DR, Strauss E, Dirks WG, Drexler HG, MacLeod RA, Sykes G, Kohara A, Nakamura Y, Elmore E, Nims RW, Alston-Roberts C, Barallon R, Los GV, Nardone RM, Price PJ, Steuer A, Thomson J, Masters JR, Kerrigan L (2013) Match criteria for human cell line authentication: where do we draw the line? Int J Cancer J Int Cancer 132(11):2510–2519. doi:10.1002/ijc.27931

    Article  CAS  Google Scholar 

  15. Garcia A, Bussaglia E, Machin P, Matias-Guiu X, Prat J (2000) Loss of heterozygosity on chromosome 17q in epithelial ovarian tumours: association with carcinomas with serous differentiation. Int J Gynecol Pathol Off J Int Soc Gynecol Pathol 19(2):152–157

    Article  CAS  Google Scholar 

  16. Byrom J, Mudaliar V, Redman CW, Jones P, Strange RC, Hoban PR (2004) Loss of heterozygosity at chromosome 9q22-31 is a frequent and early event in ovarian tumours. Int J Oncol 24(5):1271–1277

    CAS  PubMed  Google Scholar 

  17. Plisiecka-Halasa J, Dansonka-Mieszkowska A, Kraszewska E, Danska-Bidzinska A, Kupryjanczyk J (2008) Loss of heterozygosity, microsatellite instability and TP53 gene status in ovarian carcinomas. Anticancer Res 28(2A):989–996

    CAS  PubMed  Google Scholar 

  18. Lynch M (1990) The similarity index and DNA fingerprinting. Mol Biol Evol 7(5):478–484

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Weimer.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards (B372/10 Kiel 2011). Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

X. Huang and J. Weimer are both first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Weimer, J., von Wurmb-Schwark, N. et al. Alteration of STR profiles in ovarian carcinoma cells during primary culture. Arch Gynecol Obstet 294, 369–376 (2016). https://doi.org/10.1007/s00404-016-4018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-016-4018-9

Keywords

Navigation