Skip to main content

Advertisement

Log in

Amniotic fluid-derived mesenchymal stem cells: characteristics and therapeutic applications

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Amniotic fluid mesenchymal stem cells (AF-MSCs) are promising candidates for cell-based therapy. This review presents a comprehensive overview of the features and therapeutic applications of these cells.

Methods

This is a literature review combined with experience of practice.

Conclusion

Although the long-term risks of AF-MSCs require further investigation, these cells are increasing in popularity in the fields of regenerative medicine and targeting therapy because of their unique properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kang NH, Hwang KA, Kim SU, Kim YB, Hyun SH, Jeung EB, Choi KC (2012) Potential antitumor therapeutic strategies of human amniotic membrane and amniotic fluid-derived stem cells. Cancer Gene Ther 19(8):517–522. doi:10.1038/cgt.2012.30

    Article  CAS  PubMed  Google Scholar 

  2. Bitsika V, Roubelakis MG, Zagoura D, Trohatou O, Makridakis M, Pappa KI, Marini FC, Vlahou A, Anagnou NP (2012) Human amniotic fluid-derived mesenchymal stem cells as therapeutic vehicles: a novel approach for the treatment of bladder cancer. Stem Cells Dev 21(7):1097–1111. doi:10.1089/scd.2011.0151

    Article  CAS  PubMed  Google Scholar 

  3. Ferroni L, Gardin C, Tocco I, Epis R, Casadei A, Vindigni V, Mucci G, Zavan B (2012) Potential for neural differentiation of mesenchymal stem cells. Adv Biochem Eng Biotechnol. doi:10.1007/10_2012_152

    Google Scholar 

  4. Komarova S, Kawakami Y, Stoff-Khalili MA, Curiel DT, Pereboeva L (2006) Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol Cancer Ther 5(3):755–766. doi:10.1158/1535-7163.MCT-05-0334

    Article  CAS  PubMed  Google Scholar 

  5. Marappagounder D, Somasundaram I, Janvikula RS, Dorairaj S (2012) Long-term culture optimization of human omentum fat-derived mesenchymal stem cells. Cell Biol Int 36(11):1029–1036. doi:10.1042/CBI20120201

    Article  CAS  PubMed  Google Scholar 

  6. Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19(6):1450–1456. doi:10.1093/humrep/deh279

    Article  PubMed  Google Scholar 

  7. Antonucci I, Stuppia L, Kaneko Y, Yu S, Tajiri N, Bae EC, Chheda SH, Weinbren NL, Borlongan CV (2011) Amniotic fluid as a rich source of mesenchymal stromal cells for transplantation therapy. Cell Transplant 20(6):789–795. doi:10.3727/096368910X539074

    Article  PubMed  Google Scholar 

  8. Kim J, Lee Y, Kim H, Hwang KJ, Kwon HC, Kim SK, Cho DJ, Kang SG, You J (2007) Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif 40:75–90

    Article  CAS  PubMed  Google Scholar 

  9. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A (2006) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367–372. doi:10.1182/blood-2005-07-2657

    Article  CAS  PubMed  Google Scholar 

  10. Siegel G, Schafer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87(9 Suppl):S45–S49. doi:10.1097/TP.0b013e3181a285b0

    Article  PubMed  Google Scholar 

  11. Johnson1 MH (2008) Human ES cells and a blastocyst from one embryo—exciting science but conflicting ethics. Cell Stem Cell. doi:10.1016/j.stem.2008.01.021

  12. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M (2003) Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod 18(7):1489–1493. doi:10.1093/humrep/deg279

    Article  PubMed  Google Scholar 

  13. De Coppi P, Bartsch G, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106. doi:10.1038/nbt1274

    Article  PubMed  Google Scholar 

  14. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345. doi:10.1634/stemcells.2004-0058

    Article  Google Scholar 

  15. Mauro A, Turriani M, Ioannoni A, Russo V, Martelli A, Di Giacinto O, Nardinocchi D, Berardinelli P (2010) Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Vet Res Commun 34(Suppl 1):S25–S28. doi:10.1007/s11259-010-9393-2

    Article  PubMed  Google Scholar 

  16. Pesce M, Schöler HR (2001) Oct-4—gatekeeper in the beginnings of mammalian development. Stem Cells 19:271–278

    Article  CAS  PubMed  Google Scholar 

  17. Cananzi M, Atala A, De Coppi P (2009) Stem cells derived from amniotic fluid—new potentials in regenerative medicine. Ethics Biosci Life 4(1):17–27

    Google Scholar 

  18. Rennie K, Gruslin A, Hengstschlager M, Pei D, Cai J, Nikaido T, Bani-Yaghoub M (2012) Applications of amniotic membrane and fluid in stem cell biology and regenerative medicine. Stem Cells Int 2012:721538. doi:10.1155/2012/721538

    Article  PubMed Central  PubMed  Google Scholar 

  19. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317. doi:10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  20. S-z Huo, Shi P, Pang X-n (2010) Culture and identification of human amniotic mesenchymal stem cells. Chin Med Sci J 25(4):211–214. doi:10.1016/s1001-9294(11)60004-7

    Article  Google Scholar 

  21. Bai J, Hu Y, Wang YR, Liu LF, Chen J, Su SP, Wang Y (2012) Comparison of human amniotic fluid-derived and umbilical cord Wharton’s jelly-derived mesenchymal stromal cells: characterization and myocardial differentiation capacity. J Geriatr Cardiol JGC 9(2):166–171. doi:10.3724/SP.J.1263.2011.12091

    Article  Google Scholar 

  22. HU Jie YANG Li-Juan, LIU Hui, WANG Yun-Fang (2009) Fractional cultivation, identification and immunosuppression of amniotic fluid-derived human mesenchymal stem cells. Bull Acad Mil Med Sci 33(2)

  23. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, Xia L, Zhou N, Riddle M, Schroeder TM, Westendorf JJ, McIvor RS, Hogendoorn PC, Szuhai K, Oseth L, Hirsch B, Yant SR, Kay MA, Peister A, Prockop DJ, Fibbe WE, Blazar BR (2007) Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25(2):371–379. doi:10.1634/stemcells.2005-0620

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Bai J, Chen J, Liu L, Wang Y (2012) Comparative studies on different cryopreservation protocols of human amniotic fluid-derived mesenchymal stem cells. Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chin J Reparative Reconstr Surg 26(2):141–145

    Google Scholar 

  25. Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, Turcatel G, De Langhe SP, Driscoll B, Bellusci S, Minoo P, Atala A, De Filippo RE, Warburton D (2008) Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 26(11):2902–2911. doi:10.1634/stemcells.2008-0090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821–2827. doi:10.1182/blood-2004-09-3696

    Article  CAS  PubMed  Google Scholar 

  27. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111(3):1327–1333. doi:10.1182/blood-2007-02-074997

    Article  CAS  PubMed  Google Scholar 

  28. Nauta AJ, Westerhuis G, Kruisselbrink AB, Lurvink EG, Willemze R, Fibbe WE (2006) Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood 108(6):2114–2120. doi:10.1182/blood-2005-11-011650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, Lanino E, Sundberg B, Bernardo ME, Remberger M, Dini G, Egeler RM, Bacigalupo A, Fibbe W, Ringdén O (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586. doi:10.1016/s0140-6736(08)60690-x

    Article  PubMed  Google Scholar 

  30. Eliopoulos N, Stagg J, Lejeune L, Pommey S, Galipeau J (2005) Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood 106(13):4057–4065. doi:10.1182/blood-2005-03-1004

    Article  CAS  PubMed  Google Scholar 

  31. Cowan CA, Klimanskaya I, McMahon J, Atienza J, Witmyer J, Zucker JP, Wang S, Morton CC, McMahon AP, Powers D, Melton DA (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350(13):1353–1356. doi:10.1056/NEJMsr040330

    Article  CAS  PubMed  Google Scholar 

  32. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227(2):271–278. doi:10.1006/dbio.2000.9912

    Article  CAS  PubMed  Google Scholar 

  33. Aguilar S (2007) Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25(1586–1594):2006 10.1634/stemcells-0762

    Google Scholar 

  34. Zimmermann S, Voss M, Kaiser S, Kapp U, Waller CF, Martens UM (2003) Lack of telomerase activity in human mesenchymal stem cells. Leuk Off J Leuk Soc Am Leuk Res Fund UK 17(6):1146–1149. doi:10.1038/sj.leu.2402962

    Article  CAS  Google Scholar 

  35. Roubelakis MG, Bitsika V, Zagoura D, Trohatou O, Pappa KI, Makridakis M, Antsaklis A, Vlahou A, Anagnou NP (2011) In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. J Cell Mol Med 15(9):1896–1913. doi:10.1111/j.1582-4934.2010.01180.x

    Article  CAS  PubMed  Google Scholar 

  36. Sessarego N, Parodi A, Podesta M, Benvenuto F, Mogni M, Raviolo V, Lituania M, Kunkl A, Ferlazzo G, Bricarelli FD, Uccelli A, Frassoni F (2008) Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica 93(3):339–346. doi:10.3324/haematol.11869

    Article  PubMed  Google Scholar 

  37. Moschidou D, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H et al (2012) Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther 20:1953–1967

    Google Scholar 

  38. Parekkadan B, Milwid JM (2010) Mesenchymal stem cells as therapeutics. Annu Rev Biomed Eng 12(1):87–117. doi:10.1146/annurev-bioeng-070909-105309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kunter U, Rong S, Boor P, Eitner F, Muller-Newen G, Djuric Z, van Roeyen CR, Konieczny A, Ostendorf T, Villa L, Milovanceva-Popovska M, Kerjaschki D, Floege J (2007) Mesenchymal stem cells prevent progressive experimental renal failure but maldifferentiate into glomerular adipocytes. J Am Soc Nephrol JASN 18(6):1754–1764. doi:10.1681/ASN.2007010044

    Article  CAS  Google Scholar 

  40. Chiavegato A, Bollini S, Pozzobon M, Callegari A, Gasparotto L, Taiani J, Piccoli M, Lenzini E, Gerosa G, Vendramin I, Cozzi E, Angelini A, Iop L, Zanon GF, Atala A, De Coppi P, Sartore S (2007) Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 42(4):746–759. doi:10.1016/j.yjmcc.2006.12.008

    Article  CAS  PubMed  Google Scholar 

  41. Weber B, Emmert MY, Behr L, Schoenauer R, Brokopp C, Drogemuller C, Modregger P, Stampanoni M, Vats D, Rudin M, Burzle W, Farine M, Mazza E, Frauenfelder T, Zannettino AC, Zund G, Kretschmar O, Falk V, Hoerstrup SP (2012) Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation. Biomaterials 33(16):4031–4043. doi:10.1016/j.biomaterials.2011.11.087

    Article  CAS  PubMed  Google Scholar 

  42. SHAUN M.Kunisaki DAF (2006) Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. Journal oF Pediatric Surgery 41:675-682

  43. Djouad F, Mrugala D, Noël D, Jorgensen C (2006) Engineered mesenchymal stem cells for cartilage repair. Regen Med 1(4):529–537. doi:10.2217/17460751.1.4.529

    Article  CAS  PubMed  Google Scholar 

  44. Delo DM, Guan X, Wang Z, Groban L, Callahan M, Smith T, Sane DC, Payne RM, Atala A, Soker S (2011) Calcification after myocardial infarction is independent of amniotic fluid stem cell injection. Cardiovasc Pathol Off J Soc Cardiovasc Pathol 20(2):e69–e78. doi:10.1016/j.carpath.2010.03.001

    Article  CAS  Google Scholar 

  45. De Coppi P, Callegari A, Chiavegato A, Gasparotto L, Piccoli M, Taiani J, Pozzobon M, Boldrin L, Okabe M, Cozzi E, Atala A, Gamba P, Sartore S (2007) Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 177(1):369–376. doi:10.1016/j.juro.2006.09.103

    Article  PubMed  Google Scholar 

  46. Laura Perin SS (2010) Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5(2). doi:10.1371/journal.pone.0009357.g001

  47. Cananzi M, De Coppi P (2012) CD117+ amniotic fluid stem cells: state of the art and future perspectives. Organogenesis 8(3):77–88. doi:10.4161/org.22426

    Google Scholar 

  48. Klemmt PAB, Vafaizadeh V, Groner B (2010) Murine amniotic fluid stem cells contribute mesenchymal but not epithelial components to reconstituted mammary ducts. Stem Cell Res Ther 1(3):20. doi:10.1186/scrt20

    Article  PubMed Central  PubMed  Google Scholar 

  49. Gran SED (1996) Why do so many cancer patients fail to respond to interferon therapy. J Interferon Cytokine Res 16:275–281

    Article  Google Scholar 

  50. Bexell D, Scheding S, Bengzon J (2010) Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol Ther 18(6):1067–1075. doi:10.1038/mt.2010.58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, Small JE, Herrlinger U, Ourednik V, Black PM, Breakefield XO, Snyder EY (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97(23):12846–12851. doi:10.1073/pnas.97.23.12846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Rachakatla RS, Marini F, Weiss ML, Tamura M, Troyer D (2007) Development of human umbilical cord matrix stem cell-based gene therapy for experimental lung tumors. Cancer Gene Ther 14(10):828–835. doi:10.1038/sj.cgt.7701077

    Article  CAS  PubMed  Google Scholar 

  53. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8):3307–3318

    CAS  PubMed  Google Scholar 

  54. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II, Nguyen AT, Malide D, Combs CA, Hall G, Zhang J, Raffeld M, Rogers TB, Stetler-Stevenson W, Frank JA, Reitz M, Finkel T (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203(5):1235–1247. doi:10.1084/jem.20051921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, Lin RJ, Yang DM, Chang CW, Chen WH, Wei HJ, Gelovani JG (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res Off J Am Assoc Cancer Res 11(21):7749–7756. doi:10.1158/1078-0432.CCR-05-0876

    Article  CAS  Google Scholar 

  56. Lee K, Majumdar MK, Buyaner D, Hendricks JK, Pittenger MF, Mosca JD (2001) Human mesenchymal stem cells maintain transgene expression during expansion and differentiation. Mol Ther J Am Soc Gene Ther 3(6):857–866. doi:10.1006/mthe.2001.0327

    Article  CAS  Google Scholar 

  57. Gutova M, Najbauer J, Frank RT, Kendall SE, Gevorgyan A, Metz MZ, Guevorkian M, Edmiston M, Zhao D, Glackin CA, Kim SU, Aboody KS (2008) Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors. Stem Cells 26(6):1406–1413. doi:10.1634/stemcells.2008-0141

    Article  CAS  PubMed  Google Scholar 

  58. Menon LG, Picinich S, Koneru R, Gao H, Lin SY, Koneru M, Mayer-Kuckuk P, Glod J, Banerjee D (2007) Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25(2):520–528. doi:10.1634/stemcells.2006-0257

    Article  CAS  PubMed  Google Scholar 

  59. Kidd S, Caldwell L, Dietrich M, Samudio I, Spaeth EL, Watson K, Shi Y, Abbruzzese J, Konopleva M, Andreeff M, Marini FC (2010) Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 12(5):615–625. doi:10.3109/14653241003631815

    Article  CAS  PubMed  Google Scholar 

  60. Cho JA, Park H, Kim HK, Lim EH, Seo SW, Choi JS, Lee KW (2009) Hyperthermia-treated mesenchymal stem cells exert antitumor effects on human carcinoma cell line. Cancer 115(2):311–323. doi:10.1002/cncr.24032

    Article  CAS  PubMed  Google Scholar 

  61. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563. doi:10.1038/nature06188

    Article  CAS  PubMed  Google Scholar 

  62. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD (2008) Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 269(1):67–77. doi:10.1016/j.canlet.2008.04.032

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jian-Hua Zhou for the thoughtful comments on and refinements to this review. The authors’ work in this area is supported by grants from the Major State Basic Research Development Program of China (2012CB526705) and Harbin Medical University. The authors’ work in this area was performed in the National Key Laboratory of the Harbin Veterinary Research Institute.

Conflict of interest

The authors’ work in this area is supported by grants from the Major State Basic Research Development Program of China (2012CB526705) and Harbin Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangmei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wang, D., Liang, T. et al. Amniotic fluid-derived mesenchymal stem cells: characteristics and therapeutic applications. Arch Gynecol Obstet 290, 223–231 (2014). https://doi.org/10.1007/s00404-014-3231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-014-3231-7

Keywords

Navigation