Skip to main content
Log in

A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

In adults, severely damaged skin heals by scar formation and cannot regenerate to the original skin structure. However, tissue expansion is an exception, as normal skin regenerates under the mechanical stretch resulting from tissue expansion. This technique has been used clinically for defect repair and organ reconstruction for decades. However, the phenomenon of adult skin regeneration during tissue expansion has caused little attention, and the mechanism of skin regeneration during tissue expansion has not been fully understood. In this study, microarray analysis was performed on expanded human skin and normal human skin. Significant difference was observed in 77 genes, which suggest a network of several integrated cascades, including cytokines, extracellular, cytoskeletal, transmembrane molecular systems, ion or ion channels, protein kinases and transcriptional systems, is involved in the skin regeneration during expansion. Among these, the significant expression of some regeneration related genes, such as HOXA5, HOXB2 and AP1, was the first report in tissue expansion. Data in this study suggest a list of candidate genes, which may help to elucidate the fundamental mechanism of skin regeneration during tissue expansion and which may have implications for postnatal skin regeneration and therapeutic interventions in wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Austad ED, Pasyk KA, McClatchey KD, Cherry GW (1982) Histomorphologic evaluation of guinea pig skin and soft tissue after controlled tissue expansion. Plast Reconstr Surg 70:704–710

    Article  CAS  PubMed  Google Scholar 

  2. Austad ED, Thomas SB, Pasyk K (1986) Tissue expansion: dividend or loan? Plast Reconstr Surg 78:63–67

    Article  CAS  PubMed  Google Scholar 

  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc 57:289–300

    Google Scholar 

  4. Boncela J, Przygodzka P, Papiewska-Pajak I, Wyroba E, Osinska M, Cierniewski CS (2010) Plasminogen activator inhibitor type 1 interacts with {alpha}3 subunit of proteasome and modulates its activity. J Biol Chem [Epub ahead of print]

  5. Cantile M, Schiavo G, Terracciano L, Cillo C (2008) Homeobox genes in normal and abnormal vasculogenesis. Nutr Metab Cardiovasc Dis 18:651–658

    CAS  PubMed  Google Scholar 

  6. Caré A, Silvani A, Meccia E, Mattia G, Stoppacciaro A, Parmiani G, Peschle C, Colombo MP (1996) HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Mol Cell Biol 16:4842–4851

    PubMed  Google Scholar 

  7. Cherry GW, Austad E, Pasyk K, McClatchey K, Rohrich RJ (1983) Increased survival and vascularity of random-pattern skin flaps elevated in controlled expanded skin. Plast Reconstr Surg 72:680–687

    Article  CAS  PubMed  Google Scholar 

  8. De Filippo RE, Atala A (2002) Stretch and growth: the molecular and physiologic influences of tissue expansion. Plast Reconstr Surg 109:2450–2462

    Article  PubMed  Google Scholar 

  9. Duboule D (1995) Vertebrate HOX genes and proliferation: an alternative pathway to homeosis? Curr Opin Genet Dev 5:525–528

    Article  CAS  PubMed  Google Scholar 

  10. Dudas M, Wysocki A, Gelpi B, Tuan TL (2008) Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr Res 63:502–512

    Article  PubMed  Google Scholar 

  11. Freyhult E, Landfors M, Önskog J, Hvidsten TR, Rydén P (2010) Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering. BMC Bioinformatics 11:503

    Article  PubMed  Google Scholar 

  12. Fukui Y, Masuda H, Takagi M, Takahashi K, Kiyokane K (1997) The presence of h2-calponin in human keratinocyte. J Dermatol Sci 14:29–36

    Article  CAS  PubMed  Google Scholar 

  13. Fumagalli M, Musso T, Vermi W, Scutera S, Daniele R, Alotto D, Cambieri I, Ostorero A, Gentili F, Caposio P et al (2007) Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin. Exp Dermatol 16:600–610

    Article  CAS  PubMed  Google Scholar 

  14. Garin E, Lemieux M, Coulombe Y, Robinson GW, Jeannotte L (2006) Stromal Hoxa5 function controls the growth and differentiation of mammary alveolar epithelium. Dev Dyn 235:1858–1871

    Article  CAS  PubMed  Google Scholar 

  15. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  CAS  PubMed  Google Scholar 

  16. Huang S, Ingber DE (1999) The structural and mechanical complexity of cell-growth control. Nat Cell Biol 1:E131–E138

    Article  CAS  PubMed  Google Scholar 

  17. Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, McNamee H, Mooney D, Plopper G, Sims J et al (1994) Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol 150:173–224

    Article  CAS  PubMed  Google Scholar 

  18. Jain K, Sykes V, Kordula T, Lanning D (2008) Homeobox genes Hoxd3 and Hoxd8 are differentially expressed in fetal mouse excisional wounds. J Surg Res 148:45–48

    Article  CAS  PubMed  Google Scholar 

  19. Johnson PE, Kernahan DA, Bauer BS (1988) Dermal and epidermal response to soft-tissue expansion in the pig. Plast Reconstr Surg 81:390–397

    Article  CAS  PubMed  Google Scholar 

  20. Kömüves LG, Michael E, Arbeit JM, Ma XK, Kwong A, Stelnicki E, Rozenfeld S, Morimune M, Yu QC, Largman C (2002) HOXB4 homeodomain protein is expressed in developing epidermis and skin disorders and modulates keratinocyte proliferation. Dev Dyn 224:58–68

    Article  PubMed  Google Scholar 

  21. Kumar S, Duester G (2010) Retinoic acid signaling in perioptic mesenchyme represses Wnt signaling via induction of Pitx2 and Dkk2. Dev Biol 340:67–74

    Article  CAS  PubMed  Google Scholar 

  22. La Celle PT, Polakowska RR (2001) Human homeobox HOXA7 regulates keratinocyte transglutaminase type 1 and inhibits differentiation. J Biol Chem 276:32844–32853

    Article  CAS  PubMed  Google Scholar 

  23. Lin Z, Ma H, Nei M (2008) Ultraconserved coding regions outside the homeobox of mammalian Hox genes. BMC Evol Biol 8:260

    Article  PubMed  Google Scholar 

  24. Mack JA, Abramson SR, Ben Y, Coffin JC, Rothrock JK, Maytin EV, Hascall VC, Largman C, Stelnicki EJ (2003) Hoxb13 knockout adult skin exhibits high levels of hyaluronan and enhanced wound healing. Faseb J 17:1352–1354

    CAS  PubMed  Google Scholar 

  25. Martin P (1997) Wound healing—Aiming for perfect skin regeneration. Science 276:75–81

    Article  CAS  PubMed  Google Scholar 

  26. Matturri L, Azzolini A, Riberti C, Lavezzi AM, Cavalca D, Vercesi F, Azzolini C (1992) Long-term histopathologic evaluation of human expanded skin. Plast Reconstr Surg 90:636–642

    Article  CAS  PubMed  Google Scholar 

  27. Metcalfe AD, Ferguson MW (2005) Harnessing wound healing and regeneration for tissue engineering. Biochem Soc Trans 33:413–417

    Article  CAS  PubMed  Google Scholar 

  28. Neumann CG (1946) The expansion of an area of skin by progressive distention of a subcutaneous balloon; use of the method for securing skin for subtotal reconstruction of the ear. Plast Reconstr Surg 19:124–130

    Article  Google Scholar 

  29. Papa S, Zazzeroni F, Fu YX, Bubici C, Alvarez K, Dean K, Christiansen PA, Anders RA, Franzoso G (2008) Gadd45beta promotes hepatocyte survival during liver regeneration in mice by modulating JNK signaling. J Clin Invest 118:1911–1923

    Article  CAS  PubMed  Google Scholar 

  30. Park JM, Adam RM, Peters CA, Guthrie PD, Sun Z, Klagsbrun M, Freeman MR (1999) AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol 277:C294–C301

    CAS  PubMed  Google Scholar 

  31. Ruoslahti E (1997) Stretching is good for a cell. Science 276:1345–1346

    Article  CAS  PubMed  Google Scholar 

  32. Stasinopoulos IA, Mironchik Y, Raman A, Wildes F, Winnard P Jr, Raman V (2005) HOXA5-twist interaction alters p53 homeostasis in breast cancer cells. J Biol Chem 280:2294–2299

    Article  CAS  PubMed  Google Scholar 

  33. Stelnicki EJ, Kömüves LG, Kwong AO, Holmes D, Klein P, Rozenfeld S, Lawrence HJ, Adzick NS, Harrison M, Largman C (1998) HOX homeobox genes exhibit spatial and temporal changes in expression during human skin development. J Invest Dermatol 110:110–115

    Article  CAS  PubMed  Google Scholar 

  34. Takei T, Han O, Ikeda M, Male P, Mills I, Sumpio BE (1997) Cyclic strain stimulates isoform-specific PKC activation and translocation in cultured human keratinocytes. J Cell Biochem 67:327–337

    Article  CAS  PubMed  Google Scholar 

  35. Thummel R, Ju M, Sarras MP Jr, Godwin AR (2007) Both Hoxc13 orthologs are functionally important for zebrafish tail fin regeneration. Dev Genes Evol 217:413–420

    Article  CAS  PubMed  Google Scholar 

  36. Timmenga EJ, Das PK (1992) Histomorphological observations on dermal repair in expanded rabbit skin: a preliminary report. Br J Plast Surg 45:503–507

    Article  CAS  PubMed  Google Scholar 

  37. Vandenburgh HH (1992) Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol 262:R350–R355

    CAS  PubMed  Google Scholar 

  38. Wan H, Dingle S, Xu Y, Besnard V, Kaestner KH, Ang SL, Wert S, Stahlman MT, Whitsett JA (2005) Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. J Biol Chem 280:13809–13816

    Article  CAS  PubMed  Google Scholar 

  39. Wollina U, Berger U, Stolle C, Stolle H, Schubert H, Zieger M, Hipler C, Schumann D (1992) Tissue expansion in pig skin: a histochemical approach. Anat Histol Embryol 21:101–111

    Article  CAS  PubMed  Google Scholar 

  40. Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB, Saxild HH, Nielsen C, Brunak S, Knudsen S (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3:research0048

    Google Scholar 

  41. Yoshimi T, Nakamura N, Shimada S, Iguchi K, Hashimoto F, Mochitate K, Takahashi Y, Miura T (2005) Homeobox B3, FoxA1 and FoxA2 interactions in epithelial lung cell differentiation of the multipotent M3E3/C3 cell line. Eur J Cell Biol 84:555–566

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr Da Zhou for his help in sample collection and Kara Spiller for the modification of this manuscript. Key Project of National Natural Science Foundation NO. 30730092.

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Li.

Additional information

M. Yang and Y. Liang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Liang, Y., Sheng, L. et al. A preliminary study of differentially expressed genes in expanded skin and normal skin: implications for adult skin regeneration. Arch Dermatol Res 303, 125–133 (2011). https://doi.org/10.1007/s00403-011-1123-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-011-1123-2

Keywords