Skip to main content

Advertisement

Log in

Biomechanical analysis of the interval slide procedure: a fresh porcine cadaver study

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The interval slide procedure (IS) has been introduced to improve mobility in massive, retracted rotator cuff tears. As clinical studies showed controversial results, the benefit of the IS is still widely discussed.

Aim

Aim of this study was to analyze the effect of IS procedure on tendon mobility in a fresh porcine cadaver model.

Materials and methods

In 30 fresh porcine cadaver shoulders with artificial supraspinatus defect tendon mobility was tested by measuring the load (in N) during tendon reduction to the footprint at the greater tubercle using a sensor enhanced arthroscopic grasper (t1). In intervention group (N = 15) anterior IS (t2), posterior IS (t3) and intraarticular capsule release (t4) were successively performed, each followed by tendon mobility assessment. Tendon mobility of the control group (N = 15) was measured in same time schedule without intervention.

Results

Mobility did not differ between groups for native tendons (CG 28.0 ± 11.2 N vs. IG 26.6 ± 11.6 N; P = 0.75). IS procedure significantly improves mobility at about 25.2% (t1 26.6 ± 11.6 N vs. t4 19.9 ± 12.3 N; P < 0.001) compared to the native tendon and 34.1% compared to CG (CG 30.2 ± 13.7 N vs. 19.9 ± 12.3 N; P = 0.026). In posthoc analyzes, anterior IS (P < 0.001) and capsule release (P = 0.005) significantly increased mobility, whereas the posterior IS did not (P = 0.778).

Conclusion

The IS procedure results in increased supraspinatus tendon mobility in fresh porcine cadaver shoulders. However, performing the posterior IS subsequent to the anterior IS no significant improvement of mobility has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yamaguchi K, Ditsios K, Middleton WD, Hildebolt CF, Galatz LM, Teefey SA (2006) The demographic and morphological features of rotator cuff disease. A comparison of asymptomatic and symptomatic shoulders. J Bone Jt Surg Am 88(8):1699–1704. https://doi.org/10.2106/JBJS.E.00835

    Article  Google Scholar 

  2. Yamamoto A, Takagishi K, Osawa T, Yanagawa T, Nakajima D, Shitara H, Kobayashi T (2010) Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg 19(1):116–120. https://doi.org/10.1016/j.jse.2009.04.006

    Article  PubMed  Google Scholar 

  3. Savage AJ, Spruiell MD, Schwertz JM, McGwin G, Eberhardt A, Ponce BA (2013) The effect of sliding knots on the suture-tendon interface strength: a biomechanical analysis comparing sliding and static arthroscopic knots. Am J Sports Med 41(2):296–301. https://doi.org/10.1177/0363546512472168

    Article  PubMed  Google Scholar 

  4. Barber FA, Herbert MA (2013) Cyclic loading biomechanical analysis of the pullout strengths of rotator cuff and glenoid anchors: 2013 update. Arthroscopy 29(5):832–844. https://doi.org/10.1016/j.arthro.2013.01.028

    Article  PubMed  Google Scholar 

  5. Barber FA, Herbert MA (2017) All-suture anchors: biomechanical analysis of pullout strength, displacement, and failure mode. Arthroscopy 33(6):1113–1121. https://doi.org/10.1016/j.arthro.2016.09.031

    Article  PubMed  Google Scholar 

  6. Colvin AC, Egorova N, Harrison AK, Moskowitz A, Flatow EL (2012) National trends in rotator cuff repair. J Bone Jt Surg Am 94(3):227–233. https://doi.org/10.2106/jbjs.j.00739

    Article  Google Scholar 

  7. Kim JH, Hong IT, Ryu KJ, Bong ST, Lee YS, Kim JH (2014) Retear rate in the late postoperative period after arthroscopic rotator cuff repair. Am J Sports Med 42(11):2606–2613. https://doi.org/10.1177/0363546514547177

    Article  PubMed  Google Scholar 

  8. Kim KC, Shin HD, Cha SM, Park JY (2014) Repair integrity and functional outcome after arthroscopic conversion to a full-thickness rotator cuff tear: articular- versus bursal-side partial tears. Am J Sports Med 42(2):451–456. https://doi.org/10.1177/0363546513512770

    Article  PubMed  Google Scholar 

  9. Hein J, Reilly JM, Chae J, Maerz T, Anderson K (2015) Retear rates after arthroscopic single-row, double-row, and suture bridge rotator cuff repair at a minimum of 1 year of imaging follow-up: a systematic review. Arthroscopy 31(11):2274–2281. https://doi.org/10.1016/j.arthro.2015.06.004

    Article  PubMed  Google Scholar 

  10. Kuzel BR, Grindel S, Papandrea R, Ziegler D (2013) Fatty infiltration and rotator cuff atrophy. J Am Acad Orthop Surg 21(10):613–623. https://doi.org/10.5435/jaaos-21-10-613

    Article  PubMed  Google Scholar 

  11. Meyer DC, Wieser K, Farshad M, Gerber C (2012) Retraction of supraspinatus muscle and tendon as predictors of success of rotator cuff repair. Am J Sports Med 40(10):2242–2247. https://doi.org/10.1177/0363546512457587

    Article  PubMed  Google Scholar 

  12. Davidson PA, Rivenburgh DW (2000) Rotator cuff repair tension as a determinant of functional outcome. J Shoulder Elbow Surg 9(6):502–506. https://doi.org/10.1067/mse.2000.109385

    Article  CAS  PubMed  Google Scholar 

  13. Kim YK, Jung KH, Kim JW, Kim US, Hwang DH (2018) Factors affecting rotator cuff integrity after arthroscopic repair for medium-sized or larger cuff tears: a retrospective cohort study. J Shoulder Elbow Surg 27(6):1012–1020. https://doi.org/10.1016/j.jse.2017.11.016

    Article  PubMed  Google Scholar 

  14. Anley CM, Chan SK, Snow M (2014) Arthroscopic treatment options for irreparable rotator cuff tears of the shoulder. World J Orthop 5(5):557–565. https://doi.org/10.5312/wjo.v5.i5.557

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berdusco R, Trantalis JN, Nelson AA, Sohmer S, More KD, Wong B, Boorman RS, Lo IK (2015) Arthroscopic repair of massive, contracted, immobile tears using interval slides: clinical and MRI structural follow-up. Knee Surg Sports Traumatol Arthrosc 23(2):502–507. https://doi.org/10.1007/s00167-013-2683-9

    Article  PubMed  Google Scholar 

  16. Lo IK, Burkhart SS (2004) Arthroscopic repair of massive, contracted, immobile rotator cuff tears using single and double interval slides: technique and preliminary results. Arthroscopy 20(1):22–33. https://doi.org/10.1016/j.arthro.2003.11.013

    Article  PubMed  Google Scholar 

  17. Millett PJ, Warth RJ (2014) Posterosuperior rotator cuff tears: classification, pattern recognition, and treatment. J Am Acad Orthop Surg 22(8):521–534. https://doi.org/10.5435/jaaos-22-08-521

    Article  PubMed  Google Scholar 

  18. Tauro JC (1999) Arthroscopic “interval slide” in the repair of large rotator cuff tears. Arthroscopy 15(5):527–530. https://doi.org/10.1053/ar.1999.v15.0150521

    Article  CAS  PubMed  Google Scholar 

  19. Tauro JC (2004) Arthroscopic repair of large rotator cuff tears using the interval slide technique. Arthroscopy 20(1):13–21. https://doi.org/10.1016/j.arthro.2003.10.013

    Article  PubMed  Google Scholar 

  20. Kim SJ, Kim SH, Lee SK, Seo JW, Chun YM (2013) Arthroscopic repair of massive contracted rotator cuff tears: aggressive release with anterior and posterior interval slides do not improve cuff healing and integrity. J Bone Jt Surg Am 95(16):1482–1488. https://doi.org/10.2106/jbjs.l.01193

    Article  Google Scholar 

  21. Porschke F, Luecke C, Guehring T, Weiss C, Studier-Fischer S, Gruetzner PA, Schnetzke M (2020) Mobility assessment of the supraspinatus in a porcine cadaver model using a sensor-enhanced, arthroscopic grasper. Ann Biomed Eng. https://doi.org/10.1007/s10439-020-02572-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Van Ee CA, Chasse AL, Myers BS (2000) Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. J Biomech Eng 122(1):9–14

    Article  Google Scholar 

  23. Koenig HE, Liebich HG (2020) Veterinary anatomy of domestic animals, 7th edn. Georg Thieme Verlag

    Google Scholar 

  24. Constantinescu GM (2018) Illustrated veterinary anatomical nomenclature. MVS Medizinverlage Stuttgart GmbH

    Book  Google Scholar 

  25. Kim DH, Jang YH, Choi YE, Lee HR, Kim SH (2016) Evaluation of repair tension in arthroscopic rotator cuff repair: does it really matter to the integrity of the rotator cuff? Am J Sports Med 44(11):2807–2812. https://doi.org/10.1177/0363546516651831

    Article  PubMed  Google Scholar 

  26. Tashjian RZ, Erickson GA, Robins RJ, Zhang Y, Burks RT, Greis PE (2017) Influence of preoperative musculotendinous junction position on rotator cuff healing after double-row repair. Arthroscopy 33(6):1159–1166. https://doi.org/10.1016/j.arthro.2016.12.010

    Article  PubMed  Google Scholar 

  27. Tashjian RZ, Hung M, Burks RT, Greis PE (2013) Influence of preoperative musculotendinous junction position on rotator cuff healing using single-row technique. Arthroscopy 29(11):1748–1754. https://doi.org/10.1016/j.arthro.2013.08.014

    Article  PubMed  Google Scholar 

  28. Kim YK, Moon SH, Cho SH (2013) Treatment outcomes of single- versus double-row repair for larger than medium-sized rotator cuff tears: the effect of preoperative remnant tendon length. Am J Sports Med 41(10):2270–2277. https://doi.org/10.1177/0363546513499000

    Article  PubMed  Google Scholar 

  29. Baums MH, Spahn G, Buchhorn GH, Schultz W, Hofmann L, Klinger HM (2012) Biomechanical and magnetic resonance imaging evaluation of a single- and double-row rotator cuff repair in an in vivo sheep model. Arthroscopy 28(6):769–777. https://doi.org/10.1016/j.arthro.2011.11.019

    Article  PubMed  Google Scholar 

  30. Millett PJ, Warth RJ, Dornan GJ, Lee JT, Spiegl UJ (2014) Clinical and structural outcomes after arthroscopic single-row versus double-row rotator cuff repair: a systematic review and meta-analysis of level I randomized clinical trials. J Shoulder Elbow Surg 23(4):586–597. https://doi.org/10.1016/j.jse.2013.10.006

    Article  PubMed  Google Scholar 

  31. Lee KW, Moon KH, Ma CH, Lee GS, Yang DS, Choy WS (2018) Clinical and radiologic outcomes after medializing and not medializing rotator cuff tendon attachment site on chronic retracted rotator cuff tears. Arthroscopy 34(8):2298–2307. https://doi.org/10.1016/j.arthro.2018.03.015

    Article  PubMed  Google Scholar 

  32. Yamamoto N, Itoi E, Tuoheti Y, Seki N, Abe H, Minagawa H, Shimada Y, Okada K (2007) Glenohumeral joint motion after medial shift of the attachment site of the supraspinatus tendon: a cadaveric study. J Shoulder Elbow Surg 16(3):373–378. https://doi.org/10.1016/j.jse.2006.06.016

    Article  PubMed  Google Scholar 

  33. Liu J, Hughes RE, O’Driscoll SW, An KN (1998) Biomechanical effect of medial advancement of the supraspinatus tendon. A study in cadavera. J Bone Jt Surg Am 80(6):853–859

    Article  CAS  Google Scholar 

  34. Pauly S, Kieser B, Schill A, Gerhardt C, Scheibel M (2010) Biomechanical comparison of 4 double-row suture-bridging rotator cuff repair techniques using different medial-row configurations. Arthroscopy 26(10):1281–1288. https://doi.org/10.1016/j.arthro.2010.02.013

    Article  PubMed  Google Scholar 

  35. Mihata T, Fukuhara T, Jun BJ, Watanabe C, Kinoshita M (2011) Effect of shoulder abduction angle on biomechanical properties of the repaired rotator cuff tendons with 3 types of double-row technique. Am J Sports Med 39(3):551–556. https://doi.org/10.1177/0363546510388152

    Article  PubMed  Google Scholar 

  36. Kesmezacar H, Akgun I, Ogut T, Gokay S, Uzun I (2008) The coracoacromial ligament: the morphology and relation to rotator cuff pathology. J Shoulder Elbow Surg 17(1):182–188. https://doi.org/10.1016/j.jse.2007.05.015

    Article  PubMed  Google Scholar 

  37. Neer CS 2nd, Satterlee CC, Dalsey RM, Flatow EL (1992) The anatomy and potential effects of contracture of the coracohumeral ligament. Clin Orthop Relat Res 280:182–185

    Article  Google Scholar 

  38. Teunis T, Lubberts B, Reilly BT, Ring D (2014) A systematic review and pooled analysis of the prevalence of rotator cuff disease with increasing age. J Shoulder Elbow Surg 23(12):1913–1921. https://doi.org/10.1016/j.jse.2014.08.001

    Article  PubMed  Google Scholar 

  39. Lu YJ, Lu Y, Zhu YM, Zhang Q, Li GP, Tao JF, Jiang CY (2012) Preliminary histological and biomechanical study about the timing of surgical repair for acute rotator cuff tears in rabbits. Zhonghua wai ke za zhi Chin J Surg 50(6):560–565

    PubMed  Google Scholar 

  40. Gimbel JA, Van Kleunen JP, Mehta S, Perry SM, Williams GR, Soslowsky LJ (2004) Supraspinatus tendon organizational and mechanical properties in a chronic rotator cuff tear animal model. J Biomech 37(5):739–749. https://doi.org/10.1016/j.jbiomech.2003.09.019

    Article  PubMed  Google Scholar 

  41. Acevedo DC, Vanbeek C, Lazarus MD, Williams GR, Abboud JA (2014) Reverse shoulder arthroplasty for proximal humeral fractures: update on indications, technique, and results. J Shoulder Elbow Surg 23(2):279–289. https://doi.org/10.1016/j.jse.2013.10.003

    Article  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Porschke.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

Due to the original purpose for the food industry no ethical, respectively, approval of an animal welfare organization was needed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porschke, F., Schnetzke, M., Luecke, C. et al. Biomechanical analysis of the interval slide procedure: a fresh porcine cadaver study. Arch Orthop Trauma Surg 142, 3395–3403 (2022). https://doi.org/10.1007/s00402-021-04294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04294-0

Keywords

Navigation