Skip to main content
Log in

Indications for cement augmentation in fixation of geriatric intertrochanteric femur fractures: a systematic review of evidence

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Achieving durable mechanical stability in geriatric intertrochanteric proximal femur fractures remains a challenge. Concomitant poor bone quality, unstable fracture patterns, and suboptimal reduction are additional risk factors for early mechanical failure. Cement augmentation of the proximal locking screw or blade is one proposed method to augment implant anchorage. The purpose of this review is to describe the biomechanical and clinical evidence for cement augmentation of geriatric intertrochanteric fractures, and to elaborate indications for cement augmentation.

Methods

The PubMed database was searched for English language studies up to January 2021. Studies that assessed effect of calcium phosphate or methylmethacrylate cement augmentation during open reduction and internal fixation of intertrochanteric fractures were included. Studies with sample size < 5, nontraumatic or periprosthetic fractures, and nonunion or revision surgery were excluded. Study selection adhered to PRISMA criteria.

Results

801 studies were identified, of which 40 met study criteria. 9 studies assessed effect of cement augmentation on fracture displacement. All but one found that cement decreased fracture displacement. 10 studies assessed effect of cement augmentation on total load or cycles to failure. All but one demonstrated that augmented implants increased this variable. Complication rates of cement augmentation during ORIF of intertrochanteric fractures ranged from 0 to 47%, while non-augmented implants ranged from 0 to 51%. Reoperation rates ranged from 0 to 11% in the cement-augmented group and 0 to 11% in the non-augmented group. Fixation failure ranged from 0 to 11% in the cement-augmented group and 0 to 20% in the non-augmented group. Nonunion ranged from 0 to 3.6% in the cement-augmented group and 0 to 34% in the non-augmented group.

Conclusions

Calcium phosphate or PMMA-augmented CMN fixation of IT fractures increased construct stability and improved outcomes in biomechanical and early clinical studies. The findings of these studies suggest an important role for cement augmentation in patient populations at high risk of mechanical failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cummings SR, Rubin SM, Black D. The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen. Clin Orthop Relat Res. 1990(252):163–6.

  2. He S, Yan B, Zhu J, Huang X, Zhao J (2018) High failure rate of proximal femoral locking plates in fixation of trochanteric fractures. J Orthop Surg Res 13(1):248. https://doi.org/10.1186/s13018-018-0951-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lobo-Escolar A, Joven E, Iglesias D, Herrera A (2010) Predictive factors for cutting-out in femoral intramedullary nailing. Injury 41(12):1312–1316. https://doi.org/10.1016/j.injury.2010.08.009

    Article  PubMed  Google Scholar 

  4. Hsueh KK, Fang CK, Chen CM, Su YP, Wu HF, Chiu FY (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34(8):1273–1276. https://doi.org/10.1007/s00264-009-0866-2

    Article  PubMed  Google Scholar 

  5. Konstantinidis L, Papaioannou C, Blanke P, Hirschmuller A, Sudkamp NP, Helwig P. Failure after osteosynthesis of trochanteric fractures. Where is the limit of osteoporosis? Osteoporos Int. 2013;24(10):2701–6. doi:https://doi.org/10.1007/s00198-013-2392-8.

  6. Liu W, Zhou D, Liu F, Weaver MJ, Vrahas MS (2013) Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails. J Trauma Acute Care Surg 75(2):304–310. https://doi.org/10.1097/TA.0b013e31829a2c43

    Article  PubMed  Google Scholar 

  7. Parry JA, Sapp T, Langford JR, Koval KJ, Haidukewych GJ (2020) Variables Associated With Lag Screw Sliding After Single-Screw Cephalomedullary Nail Fixation of Intertrochanteric Fractures. J Orthop Trauma. https://doi.org/10.1097/bot.0000000000001730

    Article  PubMed  Google Scholar 

  8. Ciufo DJ, Zaruta DA, Lipof JS, Judd KT, Gorczyca JT, Ketz JP (2017) Risk Factors Associated With Cephalomedullary Nail Cutout in the Treatment of Trochanteric Hip Fractures. J Orthop Trauma 31(11):583–588. https://doi.org/10.1097/bot.0000000000000961

    Article  PubMed  Google Scholar 

  9. Stern LC, Gorczyca JT, Kates S, Ketz J, Soles G, Humphrey CA (2017) Radiographic Review of Helical Blade Versus Lag Screw Fixation for Cephalomedullary Nailing of Low-Energy Peritrochanteric Femur Fractures: There is a Difference in Cutout. J Orthop Trauma 31(6):305–310. https://doi.org/10.1097/bot.0000000000000853

    Article  PubMed  Google Scholar 

  10. Ibrahim I, Appleton PT, Wixted JJ, DeAngelis JP, Rodriguez EK (2019) Implant cut-out following cephalomedullary nailing of intertrochanteric femur fractures: Are helical blades to blame? Injury 50(4):926–930. https://doi.org/10.1016/j.injury.2019.02.015

    Article  PubMed  Google Scholar 

  11. Bojan AJ, Beimel C, Taglang G, Collin D, Ekholm C, Jönsson A (2013) Critical factors in cut-out complication after Gamma Nail treatment of proximal femoral fractures. BMC Musculoskelet Disord 14:1. https://doi.org/10.1186/1471-2474-14-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murena L, Moretti A, Meo F, Saggioro E, Barbati G, Ratti C et al (2018) Predictors of cut-out after cephalomedullary nail fixation of pertrochanteric fractures: a retrospective study of 813 patients. Arch Orthop Trauma Surg 138(3):351–359. https://doi.org/10.1007/s00402-017-2863-z

    Article  PubMed  Google Scholar 

  13. Tsai SW, Lin CJ, Tzeng YH, Lin CC, Huang CK, Chang MC et al (2017) Risk factors for cut-out failure of Gamma3 nails in treating unstable intertrochanteric fractures: An analysis of 176 patients. J Chin Med Assoc 80(9):587–594. https://doi.org/10.1016/j.jcma.2017.04.007

    Article  PubMed  Google Scholar 

  14. Thiele OC, Eckhardt C, Linke B, Schneider E, Lill CA (2007) Factors affecting the stability of screws in human cortical osteoporotic bone: a cadaver study. J Bone Joint Surg Br 89(5):701–705. https://doi.org/10.1302/0301-620x.89b5.18504

    Article  CAS  PubMed  Google Scholar 

  15. Seebeck J, Goldhahn J, Morlock MM, Schneider E (2005) Mechanical behavior of screws in normal and osteoporotic bone. Osteoporos Int 16(Suppl 2):S107–S111. https://doi.org/10.1007/s00198-004-1777-0

    Article  PubMed  Google Scholar 

  16. Namdari S, Rabinovich R, Scolaro J, Baldwin K, Bhandari M, Mehta S (2013) Absorbable and non-absorbable cement augmentation in fixation of intertrochanteric femur fractures: systematic review of the literature. Arch Orthop Trauma Surg 133(4):487–494. https://doi.org/10.1007/s00402-012-1677-2

    Article  PubMed  Google Scholar 

  17. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  18. Murad MH, Sultan S, Haffar S, Bazerbachi F (2018) Methodological quality and synthesis of case series and case reports. BMJ Evid Based Med 23(2):60–63. https://doi.org/10.1136/bmjebm-2017-110853

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yee DKH, Lau W, Tiu KL, Leung F, Fang E, Pineda JPS et al (2020) Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly. Arch Orthop Trauma Surg 140(12):1957–1964. https://doi.org/10.1007/s00402-020-03449-9

    Article  PubMed  Google Scholar 

  20. Kulachote N, Sa-Ngasoongsong P, Sirisreetreerux N, Chulsomlee K, Thamyongkit S, Wongsak S (2020) Predicting Factors for Return to Prefracture Ambulatory Level in High Surgical Risk Elderly Patients Sustained Intertrochanteric Fracture and Treated With Proximal Femoral Nail Antirotation (PFNA) With and Without Cement Augmentation. Geriatr Orthop Surg Rehabil 11:2151459320912121. https://doi.org/10.1177/2151459320912121

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goodnough LH, Wadhwa H, Tigchelaar SS, DeBaun MR, Chen MJ, Bishop JA et al (2020) Trochanteric fixation nail advanced with helical blade and cement augmentation: early experience with a retrospective cohort. Eur J Orthop Surg Traumatol. https://doi.org/10.1007/s00590-020-02762-8

    Article  PubMed  Google Scholar 

  22. Rai AK, Goel R, Bhatia C, Singh S, Thalanki S, Gondane A (2018) Cement Augmentation of Dynamic Hip Screw to Prevent Screw Cut Out in Osteoporotic Patients with Intertrochanteric Fractures: A Case Series. Hip Pelvis 30(4):269–275. https://doi.org/10.5371/hp.2018.30.4.269

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kammerlander C, Gebhard F, Meier C, Lenich A, Linhart W, Clasbrummel B et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: A new technique and preliminary clinical results. A prospective multicentre trial Injury 42(12):1484–1490. https://doi.org/10.1016/j.injury.2011.07.010

    Article  CAS  PubMed  Google Scholar 

  24. Kammerlander C, Doshi H, Gebhard F, Scola A, Meier C, Linhart W et al (2014) Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134(3):343–349. https://doi.org/10.1007/s00402-013-1902-7

    Article  CAS  PubMed  Google Scholar 

  25. Kammerlander C, Hem ES, Klopfer T, Gebhard F, Sermon A, Dietrich M et al (2018) Cement augmentation of the Proximal Femoral Nail Antirotation (PFNA) - A multicentre randomized controlled trial. Injury 49(8):1436–1444. https://doi.org/10.1016/j.injury.2018.04.022

    Article  PubMed  Google Scholar 

  26. Neuerburg C, Mehaffey S, Gosch M, Böcker W, Blauth M, Kammerlander C (2016) Trochanteric fragility fractures : Treatment using the cement-augmented proximal femoral nail antirotation. Oper Orthop Traumatol 28(3):164–176. https://doi.org/10.1007/s00064-016-0449-5

    Article  CAS  PubMed  Google Scholar 

  27. Dall’Oca C, Maluta T, Moscolo A, Lavini F, Bartolozzi P (2010) Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing. Injury 41(11):1150–1155. https://doi.org/10.1016/j.injury.2010.09.026

    Article  CAS  PubMed  Google Scholar 

  28. Chow SP, Tang SC, Pun WK, Lee PC, Lau HK, Lim J et al (1987) Treatment of unstable trochanteric fractures with Dimon-Hughston osteotomy displacement fixation and acrylic cement. Injury 18(2):123–127. https://doi.org/10.1016/0020-1383(87)90188-4

    Article  CAS  PubMed  Google Scholar 

  29. Kim SJ, Park HS, Lee DW, Lee JW (2018) Is calcium phosphate augmentation a viable option for osteoporotic hip fractures? Osteoporos Int 29(9):2021–2028. https://doi.org/10.1007/s00198-018-4572-z

    Article  CAS  PubMed  Google Scholar 

  30. Pun WK, Chow SP, Chan KC, Ip FK, Tang SC, Lim J et al (1987) Treatment of unstable intertrochanteric fractures with Sarmiento valgus osteotomy and acrylic cement augmentation. Injury 18(6):384–389. https://doi.org/10.1016/0020-1383(87)90283-x

    Article  CAS  PubMed  Google Scholar 

  31. Lee PC, Hsieh PH, Chou YC, Wu CC, Chen WJ (2010) Dynamic hip screws for unstable intertrochanteric fractures in elderly patients–encouraging results with a cement augmentation technique. J Trauma 68(4):954–964. https://doi.org/10.1097/TA.0b013e3181c995ec

    Article  PubMed  Google Scholar 

  32. Lau HK, Lee PC, Tang SC, Lim JK, Chow SP (1983) Treatment of comminuted trochanteric femoral fractures with Dimon Hughston displacement fixation and acrylic cement–a preliminary report of sixteen cases. Injury 15(2):129–135. https://doi.org/10.1016/0020-1383(83)90041-4

    Article  CAS  PubMed  Google Scholar 

  33. Wu MH, Lee PC, Peng KT, Wu CC, Huang TJ, Hsu RW (2012) Complications of cement-augmented dynamic hip screws in unstable type intertrochanteric fractures–a case series study. Chang Gung Med J 35(4):345–353. https://doi.org/10.4103/2319-4170.106135

    Article  PubMed  Google Scholar 

  34. Cheng CL, Chow SP, Pun WK, Leong JC (1989) Long-term results and complications of cement augmentation in the treatment of unstable trochanteric fractures. Injury 20(3):134–138. https://doi.org/10.1016/0020-1383(89)90082-x

    Article  CAS  PubMed  Google Scholar 

  35. Gupta RK, Gupta V, Gupta N (2012) Outcomes of osteoporotic trochanteric fractures treated with cement-augmented dynamic hip screw. Indian J Orthop 46(6):640–645. https://doi.org/10.4103/0019-5413.104193

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bartucci EJ, Gonzalez MH, Cooperman DR, Freedberg HI, Barmada R, Laros GS (1985) The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg Am 67(7):1094–1107

    Article  CAS  Google Scholar 

  37. Schuetze K, Ehinger S, Eickhoff A, Dehner C, Gebhard F, Richter PH (2020) Cement augmentation of the proximal femur nail antirotation: is it safe? Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-020-03531-2

    Article  PubMed  Google Scholar 

  38. Schatzker J, Ha’eri GB, Chapman M (1978) Methylmethacrylate as an adjunct in the internal fixation of intertrochanteric fractures of the femur. J Trauma 18(10):732–735. https://doi.org/10.1097/00005373-197810000-00011

    Article  CAS  PubMed  Google Scholar 

  39. Muhr G, Tscherne H, Thomas R (1979) Comminuted trochanteric femoral fractures in geriatric patients: the results of 231 cases treated with internal fixation and acrylic cement. Clin Orthop Relat Res 138:41–44

    Google Scholar 

  40. Mattsson P, Alberts A, Dahlberg G, Sohlman M, Hyldahl HC, Larsson S. Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Joint Surg Br. 2005;87(9):1203–9. doi:https://doi.org/10.1302/0301-620x.87b9.15792.

  41. Harrington KD (1975) The use of methylmethacrylate as an adjunct in the internal fixation of unstable comminuted intertrochanteric fractures in osteoporotic patients. J Bone Joint Surg Am 57(6):744–750

    Article  CAS  Google Scholar 

  42. Sermon A, Boner V, Boger A, Schwieger K, Boonen S, Broos PL et al (2012) Potential of polymethylmethacrylate cement-augmented helical proximal femoral nail antirotation blades to improve implant stability–a biomechanical investigation in human cadaveric femoral heads. J Trauma Acute Care Surg 72(2):E54–E59. https://doi.org/10.1097/ta.0b013e31821852ed

    Article  CAS  PubMed  Google Scholar 

  43. Sermon A, Hofmann-Fliri L, Richards RG, Flamaing J, Windolf M (2014) Cement augmentation of hip implants in osteoporotic bone: how much cement is needed and where should it go? J Orthop Res 32(3):362–368. https://doi.org/10.1002/jor.22522

    Article  CAS  PubMed  Google Scholar 

  44. Ehrnthaller C, Olivier AC, Gebhard F, Dürselen L (2017) The role of lesser trochanter fragment in unstable pertrochanteric A2 proximal femur fractures - is refixation of the lesser trochanter worth the effort? Clin Biomech (Bristol, Avon) 42:31–37. https://doi.org/10.1016/j.clinbiomech.2016.12.013

    Article  Google Scholar 

  45. Fliri L, Lenz M, Boger A, Windolf M (2012) Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg 72(4):1098–1101. https://doi.org/10.1097/TA.0b013e318248bfa7

    Article  PubMed  Google Scholar 

  46. Erhart S, Schmoelz W, Blauth M, Lenich A (2011) Biomechanical effect of bone cement augmentation on rotational stability and pull-out strength of the Proximal Femur Nail Antirotation. Injury 42(11):1322–1327. https://doi.org/10.1016/j.injury.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  47. Augat P, Rapp S, Claes L (2002) A modified hip screw incorporating injected cement for the fixation of osteoporotic trochanteric fractures. J Orthop Trauma 16(5):311–316. https://doi.org/10.1097/00005131-200205000-00004

    Article  PubMed  Google Scholar 

  48. Blankstein M, Widmer D, Götzen M, Hofmann-Fliri L, Richards RG, Gueorguiev B et al (2014) Assessment of intraosseous femoral head pressures during cement augmentation of the perforated proximal femur nail antirotation blade. J Orthop Trauma 28(7):398–402. https://doi.org/10.1097/bot.0000000000000069

    Article  PubMed  Google Scholar 

  49. Yetkinler DN, Goodman SB, Reindel ES, Carter D, Poser RD, Constantz BR (2002) Mechanical evaluation of a carbonated apatite cement in the fixation of unstable intertrochanteric fractures. Acta Orthop Scand 73(2):157–164. https://doi.org/10.1080/000164702753671731

    Article  PubMed  Google Scholar 

  50. Elder S, Frankenburg E, Goulet J, Yetkinler D, Poser R, Goldstein S (2000) Biomechanical evaluation of calcium phosphate cement-augmented fixation of unstable intertrochanteric fractures. J Orthop Trauma 14(6):386–393. https://doi.org/10.1097/00005131-200008000-00002

    Article  CAS  PubMed  Google Scholar 

  51. Fensky F, Nüchtern JV, Kolb JP, Huber S, Rupprecht M, Jauch SY et al (2013) Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures–a biomechanical cadaver study. Injury 44(6):802–807. https://doi.org/10.1016/j.injury.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  52. Stoffel KK, Leys T, Damen N, Nicholls RL, Kuster MS (2008) A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clin Biomech (Bristol, Avon) 23(1):45–51. https://doi.org/10.1016/j.clinbiomech.2007.08.014

    Article  Google Scholar 

  53. Moore DC, Frankenburg EP, Goulet JA, Goldstein SA (1997) Hip screw augmentation with an in situ-setting calcium phosphate cement: an in vitro biomechanical analysis. J Orthop Trauma 11(8):577–583. https://doi.org/10.1097/00005131-199711000-00006

    Article  CAS  PubMed  Google Scholar 

  54. von der Linden P, Gisep A, Boner V, Windolf M, Appelt A, Suhm N (2006) Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 24(12):2230–2237. https://doi.org/10.1002/jor.20299

    Article  PubMed  Google Scholar 

  55. Choueka J, Koval KJ, Kummer FJ, Zukerman JD (1996) Cement augmentation of intertrochanteric fracture fixation: a cadaver comparison of 2 techniques. Acta Orthop Scand 67(2):153–157. https://doi.org/10.3109/17453679608994661

    Article  CAS  PubMed  Google Scholar 

  56. Mattsson P, Larsson S. Unstable trochanteric fractures augmented with calcium phosphate cement. A prospective randomized study using radiostereometry to measure fracture stability. Scand J Surg. 2004;93(3):223–8. doi:https://doi.org/10.1177/145749690409300310.

  57. Sermon A, Boner V, Schwieger K, Boger A, Boonen S, Broos P et al (2012) Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density. Clin Biomech 27(1):71–76. https://doi.org/10.1016/j.clinbiomech.2011.07.006

    Article  CAS  Google Scholar 

  58. Boner V, Kuhn P, Mendel T, Gisep A (2009) Temperature evaluation during PMMA screw augmentation in osteoporotic bone–an in vitro study about the risk of thermal necrosis in human femoral heads. J Biomed Mater Res B Appl Biomater 90(2):842–848. https://doi.org/10.1002/jbm.b.31353

    Article  CAS  PubMed  Google Scholar 

  59. Palm H, Jacobsen S, Sonne-Holm S, Gebuhr P (2007) Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Joint Surg Am 89(3):470–475. https://doi.org/10.2106/jbjs.f.00679

    Article  PubMed  Google Scholar 

  60. Haidukewych GJ, Israel TA, Berry DJ (2001) Reverse obliquity fractures of the intertrochanteric region of the femur. J Bone Joint Surg Am 83(5):643–650. https://doi.org/10.2106/00004623-200105000-00001

    Article  CAS  PubMed  Google Scholar 

  61. Gavaskar AS, Tummala NC, Srinivasan P, Gopalan H, Karthik B, S S. Helical Blade or the Integrated Lag Screws: A Matched Pair Analysis of 100 Patients With Unstable Trochanteric Fractures. J Orthop Trauma. 2018;32(6):274–7. doi:https://doi.org/10.1097/bot.0000000000001145.

  62. Serrano R, Blair JA, Watson DT, Infante AF Jr, Shah AR, Mir HR et al (2017) Cephalomedullary Nail Fixation of Intertrochanteric Femur Fractures: Are Two Proximal Screws Better Than One? J Orthop Trauma 31(11):577–582. https://doi.org/10.1097/bot.0000000000000967

    Article  PubMed  Google Scholar 

  63. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77(7):1058–1064. https://doi.org/10.2106/00004623-199507000-00012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Henry Goodnough.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodnough, L.H., Wadhwa, H., Tigchelaar, S. et al. Indications for cement augmentation in fixation of geriatric intertrochanteric femur fractures: a systematic review of evidence. Arch Orthop Trauma Surg 142, 2533–2544 (2022). https://doi.org/10.1007/s00402-021-03872-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-03872-6

Keywords

Navigation