Skip to main content

Advertisement

Log in

A novel method for intraoperative osseomechanical strength measurements: a biomechanical ex vivo evaluation on proximal femora

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The increasing number of geriatric traumatology cases has intensified the need to reliably and objectively evaluate local bone quality, the latter poses a decisive factor for the choice of an optimal approach to treat osteoporotic fractures. Osteodensitometry imaging techniques are not routinely available in acute operative settings, nor do they provide objective information on local bone properties specifically needed for the prognosis of implant stability.

Materials and methods

This study sought to verify ex vivo the feasibility and sensitivity of a novel method for the determination of local bone strength in the acute operative setting (intraoperative osseomechanical strength measurement; IOSM) that is based on the principle of material displacement resistance against the force of a rotary indenter. Samples consisted of human femoral heads obtained after total hip replacement. Comparisons were made with results obtained via conventional dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (qCT).

Results

Regression analyses of the results showed a highly significant correlation between the IOSM and the control methods (r = 0.61 and r = 0.56; p < 0.01), indicating that this new approach qualifies as a reliable tool for the intraoperative evaluation of the intrinsic local bone strength.

Conclusions

The intraoperative integration of this method may support surgeon on taking proper decisions in terms of optimal surgical approaches and prevention of complications inherent to osteoporotic bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Czerwiński E, Badurski JE, Marcinowska-Suchowierska E, Osieleniec J (2007) Current understanding of osteoporosis according to the position of the World Health Organization (WHO) and International Osteoporosis Foundation. Ortop Traumatol Rehabil 9:337–356

    PubMed  Google Scholar 

  2. Eisenmenger M, Pötzsch O, Sommer B et al (2007) Bevölkerung Deutschlands bis 2050—11. koordinierte Bevölkerungsvorausberechnung. Statistisches Bundesamt, Wiesbaden

    Google Scholar 

  3. Papaioannou A, Kennedy CC, Ioannidis G et al (2009) The impact of incident fractures on health-related quality of life: 5 years of data from the Canadian Multicentre Osteoporosis Study. Osteoporos Int 20:703–714. https://doi.org/10.1007/s00198-008-0743-7

    Article  CAS  PubMed  Google Scholar 

  4. Adachi JD, Loannidis G, Berger C et al (2001) The influence of osteoporotic fractures on health-related quality of life in community-dwelling men and women across Canada. Osteoporos Int 12:903–908

    Article  CAS  Google Scholar 

  5. Davis TR, Sher JL, Horsman A et al (1990) Intertrochanteric femoral fractures. Mechanical failure after internal fixation. J Bone Joint Surg Br 72:26–31

    Article  CAS  Google Scholar 

  6. Barrios C, Broström LA, Stark A, Walheim G (1993) Healing complications after internal fixation of trochanteric hip fractures: the prognostic value of osteoporosis. J Orthop Trauma 7:438–442

    Article  CAS  Google Scholar 

  7. Bonnaire F, Zenker H, Lill C et al (2005) Treatment strategies for proximal femur fractures in osteoporotic patients. Osteoporos Int 16:S93–S102. https://doi.org/10.1007/s00198-004-1746-7

    Article  PubMed  Google Scholar 

  8. Bonnaire F, Weber A, Bösl O et al (2007) “Cutting out” bei pertrochantären frakturen—ein problem der osteoporose? Unfallchirurg 110:425–432. https://doi.org/10.1007/s00113-007-1248-0

    Article  CAS  PubMed  Google Scholar 

  9. Bartucci EJ, Gonzalez MH, Cooperman DR et al (1985) The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg Am 67:1094–1107

    Article  CAS  Google Scholar 

  10. Kammerlander C, Gebhard F, Meier C et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. a prospective multicentre trial. Injury 42:1484–1490. https://doi.org/10.1016/j.injury.2011.07.010

    Article  CAS  PubMed  Google Scholar 

  11. Baruffaldi F, Barbanti Brodano G, Testoni M et al (1996) Femoral densitometry as potential preoperative indicator for cementation of hip prosthesis. Radiol Med 92:193–198

    CAS  PubMed  Google Scholar 

  12. Ammann P, Rizzoli R (2003) Bone strength and its determinants. Osteoporos Int 14:13–18. https://doi.org/10.1007/s00198-002-1345-4

    Article  Google Scholar 

  13. Atsumi M, Park S-H, Wang H-L (2007) Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants 22:743–754

    Google Scholar 

  14. Suhm N, Hengg C, Schwyn R et al (2007) Mechanical torque measurement predicts load to implant cut-out: a biomechanical study investigating DHS® anchorage in femoral heads. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-006-0265-8

    Article  PubMed  Google Scholar 

  15. Grote S, Noeldeke T, Blauth M et al (2013) Mechanical torque measurement in the proximal femur correlates to failure load and bone mineral density ex vivo. Orthop Rev 5:77–81. https://doi.org/10.4081/or.2013.e16

    Article  Google Scholar 

  16. Mueller MA, Hengg C, Hirschmann M et al (2012) Mechanical torque measurement for in vivo quantification of bone strength in the proximal femur. Injury 43:1712–1717

    Article  Google Scholar 

  17. Taylor WR, Szwedowski TD, Heller MO et al (2012) The difference between stretching and splitting muscle trauma during THA seems not to play a dominant role in influencing periprosthetic BMD changes. Clin Biomech 27:813–818. https://doi.org/10.1016/j.clinbiomech.2012.05.004

    Article  Google Scholar 

  18. Müller MA, Hengg C, Krettek C et al (2015) Trabecular bone strength is not an independent predictive factor for dynamic hip screw migration—a prospective multicenter cohort study. J Orthop Res 33:1680–1686. https://doi.org/10.1002/jor.22934

    Article  PubMed  Google Scholar 

  19. Trudel G, Koike Y, Dinh L, Uhthoff HK (2005) Thawing of frozen calcaneus bone specimens has no effect on the bone mineral density using dual energy X-ray absorptiometry: a study in rabbits and humans. Physiol Meas 26:769–777. https://doi.org/10.1088/0967-3334/26/5/015

    Article  PubMed  Google Scholar 

  20. Whitehouse RW, Economou G, Adams JE (1993) Influence of temperature on QCT: implications for mineral densitometry. J Comput Assist Tomogr 17:945–951

    Article  CAS  Google Scholar 

  21. Lenich A (2005) Der trochantäre Fixationsnagel (TFN) im biomechanischen Test. In: DGU-DGOT Tagung. p 670

  22. Bonnaire FA, Buitrago-Tellez C, Schmal H et al (2002) Correlation of bone density and geometric parameters to the mechanical strength of the femoral neck. Injury 33(Suppl 3):C47–53

    Article  Google Scholar 

  23. Ahrengart L, Tornkvist H, Fornander P et al (2002) A randomized study of the compression hip screw and gamma nail in 426 fractures. Clin Orthop Relat Res 401:209–222

    Article  Google Scholar 

  24. Brammar TJ, Kendrew J, Khan RJK, Parker MJ (2005) Reverse obliquity and transverse fractures of the trochanteric region of the femur; a review of 101 cases. Injury 36:851–857. https://doi.org/10.1016/j.injury.2005.02.004

    Article  PubMed  Google Scholar 

  25. Herrera A, Domingo L, Calvo A et al (2002) A comparative study of trochanteric fractures treated with the Gamma nail or the proximal femoral nail. Int Orthop 26:365–369. https://doi.org/10.1007/s00264-002-0389-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hohendorff B, Meyer P, Menezes D et al (2005) Behandlungsergebnisse und Komplikationen nach PFN-osteosynthese. Unfallchirurgie 108:938–953. https://doi.org/10.1007/s00113-005-0962-8

    Article  CAS  Google Scholar 

  27. Werner-Tutschku W, Lajtai G, Schmiedhuber G et al (2002) Intra- und perioperative Komplikationen bei der Stabilisierung von per- und subtrochantären Femurfrakturen mittels PFN ®. Unfallchirurgie 105:881–885. https://doi.org/10.1007/s00113-002-0416-5

    Article  CAS  Google Scholar 

  28. Schipper IB, Marti RK, van der Werken C (2004) Unstable trochanteric femoral fractures: extramedullary or intramedullary fixation. Review of literature. Injury 35:142–151

    Article  CAS  Google Scholar 

  29. Parker MJ, Handoll HH (2010) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD000093.pub5

    Article  PubMed  Google Scholar 

  30. Parker M, Handoll H (2005) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. In: Parker M (ed) Cochrane Database Syst Rev Wiley, Chichester, p CD000093

  31. Center JR, Nguyen TV, Pocock NA, Eisman JA (2004) Volumetric bone density at the femoral neck as a common measure of hip fracture risk for men and women. J Clin Endocrinol Metab 89:2776–2782. https://doi.org/10.1210/jc.2003-030551

    Article  CAS  PubMed  Google Scholar 

  32. Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet (Lond, Engl) 348:1535–1541

    Article  CAS  Google Scholar 

  33. Kanis JA, Glüer CC (2000) An update on the diagnosis and assessment of osteoporosis with densitometry: Committee of Scientific Advisors, International Osteoporosis Foundation. Osteoporos Int 11:192–202

    Article  CAS  Google Scholar 

  34. Goulet RW, Goldstein SA, Ciarelli MJ et al (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389

    Article  CAS  Google Scholar 

  35. Beck TJ, Ruff CB, Warden KE et al (1990) Predicting femoral neck strength from bone mineral data: A structural approach. Invest Radiol 25:6–18

    Article  CAS  Google Scholar 

  36. Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet 341:72–75

    Article  CAS  Google Scholar 

  37. Lotz JC, Gerhart TN, Hayes WC (1990) Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 14:107–114

    Article  CAS  Google Scholar 

  38. Lotz JC, Hayes WC (1990) The use of quantitative computed tomography to estimate risk of fracture of the hip from falls. J Bone Joint Surg Am 72:689–700

    Article  CAS  Google Scholar 

  39. Bonnaire FA, Weber AT (2002) Analysis of fracture gap changes, dynamic and static stability of different osteosynthetic procedures in the femoral neck. Injury 33(Suppl 3):C24–32

    Article  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Maslaris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslaris, A., Brinkmann, O., Layher, F. et al. A novel method for intraoperative osseomechanical strength measurements: a biomechanical ex vivo evaluation on proximal femora. Arch Orthop Trauma Surg 140, 727–734 (2020). https://doi.org/10.1007/s00402-019-03284-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-019-03284-7

Keywords

Navigation