Skip to main content

Advertisement

Log in

A lateral retinacular release during total knee arthroplasty changes femorotibial kinematics: an in vitro study

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Lateral retinacular release (LRR) is a common procedure during total knee arthroplasty (TKA), especially if patellar maltracking is observed intraoperatively. The impact of LRR on patellofemoral kinematics is well-examined, but the influence on femorotibial kinematics requires more elucidation. Therefore, the aim of this study was to evaluate the effects of LRR on femorotibial kinematics in vitro.

Materials and methods

A fixed bearing TKA was implanted in six human knee specimens. Femorotibial kinematics were measured dynamically through the use of a custom-constructed knee rig which flexes the knee from 20° to 120° under weight bearing conditions. Measurements were performed before and after LRR. LRR was performed completely including transection of synovium, retinaculum and tractus fibers. For the registration of tibiofemoral kinematics a 3-dimensional-ultrasound-based motion analysis system was used.

Results

LRR revealed a significant reduction of femoral rollback at the lateral compartment (9.4 ± 5.0 vs 7.8 ± 9.4 mm; p < 0.01), whereas the present decrease of femoral rollback at the medial compartment was not significant (3.4 ± 4.7 vs 2.3 ± 5.9 mm; p = 0.34). Accordingly, LRR significantly reduced internal rotation of the tibia (0.8°; p < 0.01).

Conclusion

The results suggest that LRR significantly decreases lateral femoral rollback as well as internal rotation of the tibia, probably by changing the tension of the iliotibial band. When performing a LRR in clinical routine, surgeons should be aware of altering not only patellofemoral kinematics but also the femorotibial kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson JG, Wixson RL, Tsai D, Stulberg SD, Chang RW (1996) Functional outcome and patient satisfaction in total knee patients over the age of 75. J Arthroplasty 11(7):831–840. https://doi.org/10.1016/S0883-5403(96)80183-5

    Article  CAS  PubMed  Google Scholar 

  2. Kurtz SM, Ong KL, Lau E, Widmer M, Maravic M, Gomez-Barrena E, de Pina Mde F, Manno V, Torre M, Walter WL, de Steiger R, Geesink RG, Peltola M, Roder C (2011) International survey of primary and revision total knee replacement. Int Orthop 35(12):1783–1789. https://doi.org/10.1007/s00264-011-1235-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dunbar MJ, Robertsson O, Ryd L, Lidgren L (2001) Appropriate questionnaires for knee arthroplasty. Results of a survey of 3600 patients from The Swedish Knee Arthroplasty Registry. J Bone Joint Surg Br 83(3):339–344. https://doi.org/10.1302/0301-620X.83B3.11134

    Article  CAS  PubMed  Google Scholar 

  4. Noble PC, Conditt MA, Cook KF, Mathis KB (2006) The John Insall Award: patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 452:35–43. https://doi.org/10.1097/01.blo.0000238825.63648.1e

    Article  PubMed  Google Scholar 

  5. Boyd AD Jr, Ewald FC, Thomas WH, Poss R, Sledge CB (1993) Long-term complications after total knee arthroplasty with or without resurfacing of the patella. J Bone Joint Surg Am 75(5):674–681

    Article  PubMed  Google Scholar 

  6. Cerciello S, Robin J, Lustig S, Maccauro G, Heyse TJ, Neyret P (2016) The role of patelloplasty in total knee arthroplasty. Arch Orthop Trauma Surg 136(11):1607–1613. https://doi.org/10.1007/s00402-016-2577-7

    Article  PubMed  Google Scholar 

  7. Heyse TJ, Becher C, Kron N, Ostermeier S, Hurschler C, Schofer MD, Tibesku CO, Fuchs-Winkelmann S (2010) Patellofemoral pressure after TKA in vitro: highly conforming vs. posterior stabilized inlays. Arch Orthop Trauma Surg 130(2):191–196. https://doi.org/10.1007/s00402-009-0920-y

    Article  PubMed  Google Scholar 

  8. Fuchs S, Schutte G, Witte H, Rosenbaum D (2000) Retropatellar contact characteristics in total knee arthroplasty with and without patellar resurfacing. Int Orthop 24(4):191–193. https://doi.org/10.1007/s002640000140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keshmiri A, Dotzauer F, Baier C, Maderbacher G, Grifka J, Sendtner E (2017) Stability of capsule closure and postoperative anterior knee pain after medial parapatellar approach in TKA. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-017-2706-y

    Google Scholar 

  10. Merican AM, Ghosh KM, Iranpour F, Deehan DJ, Amis AA (2011) The effect of femoral component rotation on the kinematics of the tibiofemoral and patellofemoral joints after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19(9):1479–1487. https://doi.org/10.1007/s00167-011-1499-8

    Article  CAS  PubMed  Google Scholar 

  11. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L (2001) Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res (392):46–55

  12. Steinbruck A, Schroder C, Woiczinski M, Muller T, Muller PE, Jansson V, Fottner A (2016) Influence of tibial rotation in total knee arthroplasty on knee kinematics and retropatellar pressure: an in vitro study. Knee Surg Sports Traumatol Arthrosc 24(8):2395–2401. https://doi.org/10.1007/s00167-015-3503-1

    Article  PubMed  Google Scholar 

  13. Yang CC, McFadden LA, Dennis DA, Kim RH, Sharma A (2008) Lateral retinacular release rates in mobile-versus fixed-bearing TKA. Clin Orthop Relat Res 466(11):2656–2661. https://doi.org/10.1007/s11999-008-0425-y

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kusuma SK, Puri N, Lotke PA (2009) Lateral retinacular release during primary total knee arthroplasty: effect on outcomes and complications. J Arthroplasty 24(3):383–390. https://doi.org/10.1016/j.arth.2007.11.004

    Article  PubMed  Google Scholar 

  15. Weber AB, Worland RL, Jessup DE, Van Bowen J, Keenan J (2003) The consequences of lateral release in total knee replacement: a review of over 1000 knees with follow up between 5 and 11 years. Knee 10(2):187–191. https://doi.org/10.1016/S0968-0160(02)00059-5

    Article  PubMed  Google Scholar 

  16. Maniar RN, Singhi T, Rathi SS, Baviskar JV, Nayak RM (2012) Surgical technique: lateral retinaculum release in knee arthroplasty using a stepwise, outside-in technique. Clin Orthop Relat Res 470(10):2854–2863. https://doi.org/10.1007/s11999-012-2420-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brick GW, Scott RD (1989) Blood supply to the patella. Significance in total knee arthroplasty. J Arthroplasty 4(Suppl):S75–S79. https://doi.org/10.1016/S0883-5403(89)80011-7

    Article  PubMed  Google Scholar 

  18. Johnson DP, Eastwood DM (1992) Lateral patellar release in knee arthroplasty. Effect on wound healing. J Arthroplasty 7(Suppl):427–431

    Article  PubMed  Google Scholar 

  19. Hille E, Schulitz KP, Henrichs C, Schneider T (1985) Pressure and contract-surface measurements within the femoropatellar joint and their variations following lateral release. Arch Orthop Trauma Surg 104 (5):275–282

    Article  CAS  PubMed  Google Scholar 

  20. Hsu HC, Luo ZP, Rand JA, An KN (1997) Influence of lateral release on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplasty 12(1):74–83. https://doi.org/10.1016/S0883-5403(97)90051-6

    Article  CAS  PubMed  Google Scholar 

  21. Merican AM, Ghosh KM, Baena FR, Deehan DJ, Amis AA (2014) Patellar thickness and lateral retinacular release affects patellofemoral kinematics in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22(3):526–533. https://doi.org/10.1007/s00167-012-2312-z

    Article  PubMed  Google Scholar 

  22. Ostermeier S, Holst M, Hurschler C, Windhagen H, Stukenborg-Colsman C (2007) Dynamic measurement of patellofemoral kinematics and contact pressure after lateral retinacular release: an in vitro study. Knee Surg Sports Traumatol Arthrosc 15(5):547–554. https://doi.org/10.1007/s00167-006-0261-0

    Article  PubMed  Google Scholar 

  23. Merican AM, Amis AA (2008) Anatomy of the lateral retinaculum of the knee. J Bone Joint Surg Br 90(4):527–534. https://doi.org/10.1302/0301-620X.90B4.20085

    Article  CAS  PubMed  Google Scholar 

  24. Lutzner J, Krummenauer F, Gunther KP, Kirschner S (2010) Rotational alignment of the tibial component in total knee arthroplasty is better at the medial third of tibial tuberosity than at the medial border. BMC Musculoskelet Disord 11:57. https://doi.org/10.1186/1471-2474-11-57

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schroder C, Steinbruck A, Muller T, Woiczinski M, Chevalier Y, Weber P, Muller PE, Jansson V (2015) Rapid prototyping for in vitro knee rig investigations of prosthetized knee biomechanics: comparison with cobalt-chromium alloy implant material. Biomed Res Int 2015:185142. https://doi.org/10.1155/2015/185142

    PubMed  PubMed Central  Google Scholar 

  26. Steinbruck A, Schroder C, Woiczinski M, Fottner A, Muller PE, Jansson V (2014) The effect of trochlea tilting on patellofemoral contact patterns after total knee arthroplasty: an in vitro study. Arch Orthop Trauma Surg 134(6):867–872. https://doi.org/10.1007/s00402-014-1956-1

    Article  PubMed  Google Scholar 

  27. Steinbruck A, Schroder C, Woiczinski M, Fottner A, Muller PE, Jansson V (2013) Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement. Biomed Eng Online 12:58. https://doi.org/10.1186/1475-925X-12-58

    Article  PubMed  PubMed Central  Google Scholar 

  28. Steinbruck A, Schroder C, Woiczinski M, Fottner A, Pinskerova V, Muller PE, Jansson V (2016) Femorotibial kinematics and load patterns after total knee arthroplasty: an in vitro comparison of posterior-stabilized versus medial-stabilized design. Clin Biomech (Bristol Avon) 33:42–48. https://doi.org/10.1016/j.clinbiomech.2016.02.002

    Article  Google Scholar 

  29. Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38(2):197–208. https://doi.org/10.1016/j.jbiomech.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  30. Hill PF, Vedi V, Williams A, Iwaki H, Pinskerova V, Freeman MA (2000) Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 82(8):1196–1198

    Article  CAS  PubMed  Google Scholar 

  31. Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res (428):180–189

  32. Lutzner J, Kirschner S, Gunther KP, Harman MK (2012) Patients with no functional improvement after total knee arthroplasty show different kinematics. Int Orthop 36(9):1841–1847. https://doi.org/10.1007/s00264-012-1584-8

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hossain F, Patel S, Rhee SJ, Haddad FS (2011) Knee arthroplasty with a medially conforming ball-and-socket tibiofemoral articulation provides better function. Clin Orthop Relat Res 469(1):55–63. https://doi.org/10.1007/s11999-010-1493-3

    Article  PubMed  Google Scholar 

  34. Moonot P, Mu S, Railton GT, Field RE, Banks SA (2009) Tibiofemoral kinematic analysis of knee flexion for a medial pivot knee. Knee Surg Sports Traumatol Arthrosc 17(8):927–934. https://doi.org/10.1007/s00167-009-0777-1

    Article  PubMed  Google Scholar 

  35. Incavo SJ, Beynnon BD, Johnson CC, Churchill DL (1997) Knee kinematics in genesis total knee arthroplasty. A comparison of different tibial designs with and without posterior cruciate substitution in cadaveric specimens. Am J Knee Surg 10(4):209–215

    CAS  PubMed  Google Scholar 

  36. Ishida K, Matsumoto T, Tsumura N, Iwakura T, Kubo S, Iguchi T, Akisue T, Nishida K, Kurosaka M, Kuroda R (2014) No difference between double-high insert and medial-pivot insert in TKA. Knee Surg Sports Traumatol Arthrosc 22(3):576–580. https://doi.org/10.1007/s00167-012-2314-x

    Article  PubMed  Google Scholar 

  37. Zha GC, Sun JY, Dong SJ (2014) Less anterior knee pain with a routine lateral release in total knee arthroplasty without patellar resurfacing: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 22(3):517–525. https://doi.org/10.1007/s00167-013-2789-0

    Article  PubMed  Google Scholar 

  38. Victor J, Labey L, Wong P, Innocenti B, Bellemans J (2010) The influence of muscle load on tibiofemoral knee kinematics. J Orthop Res 28(4):419–428. https://doi.org/10.1002/jor.21019

    PubMed  Google Scholar 

  39. Calliess T, Ettinger M, Schado S, Becher C, Hurschler C, Ostermeier S (2016) Patella tracking and patella contact pressure in modular patellofemoral arthroplasty: a biomechanical in vitro analysis. Arch Orthop Trauma Surg 136(6):849–855. https://doi.org/10.1007/s00402-016-2451-7

    Article  PubMed  Google Scholar 

  40. Daniilidis K, Holl S, Gosheger G, Dieckmann R, Martinelli N, Ostermeier S, Tibesku CO (2013) Femoro-tibial kinematics after TKA in fixed- and mobile-bearing knees in the sagittal plane. Knee Surg Sports Traumatol Arthrosc 21(10):2392–2397. https://doi.org/10.1007/s00167-012-1986-6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Aesculap B.Braun company for donating the prostheses used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Steinbrück.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author is stating the following conflicts of interest: Aesculap B.Braun has donated the prostheses used in this study. They had no influence on the study design nor on the results or interpretation of data. Furthermore they had no involvement in writing the manuscript and no influence in the decision to submit the article in this journal. Besides this study following potential conflicts may exist: Arnd Steinbrück has received funding from B.Braun Aesculap, Medacta International, Implantcast. Christian Schröder—no conflict of interest; Matthias Woiczinski—no conflict of interest; Alexander Glogaza—no conflict of interest; Peter E. Müller has received funding from B.Braun Aesculap, Exatech, Medacta International and Orthospace; he is member of the editorial board of Archives of Medical Science; Volkmar Jansson has received funding from B.Braun Aesculap, Medacta International; Andreas Fottner—no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinbrück, A., Schröder, C., Woiczinski, M. et al. A lateral retinacular release during total knee arthroplasty changes femorotibial kinematics: an in vitro study. Arch Orthop Trauma Surg 138, 401–407 (2018). https://doi.org/10.1007/s00402-017-2843-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-017-2843-3

Keywords

Navigation