Skip to main content

Advertisement

Log in

Evaluation of biomechanical properties: are porcine flexor tendons and bovine extensor tendons eligible surrogates for human tendons in in vitro studies?

  • Handsurgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Porcine flexor tendons, bovine extensor tendons, and human (semitendinosus) tendons are frequently used as substitutes for human ACL grafts in biomechanical in vitro studies. This study compares the biomechanical properties and structural differences of these tendons.

Materials and methods

In this biomechanical study, fresh-frozen porcine flexor tendons, bovine extensor tendons, and human semitendinosus tendons were used (n = 36). The tendons were mounted in a uniaxial testing machine (Zwick/Roell) with cryo-clamps, leaving a 60 mm tendon part free between the two clamps. Specimens have been loaded to failure to evaluate the biomechanical parameters stiffness, yield load, and maximum load. A Total Collagen Assay Kit was used to detect differences in the total collagen type I concentration (n = 30). A one-way ANOVA was performed to detect differences in the means. The significance level was set at p < 0.05.

Results

There were no significant differences in the stiffness between the groups (bovine 194 ± 43 N/mm, porcine 211 ± 63 N/mm, and human cadaveric 208 ± 58 N/mm). The yield and maximum loads were high (>1000 N) in all groups, but they were significantly increased in both animal specimens (means of 1681–1795 N) compared with human cadaveric specimen (means of 1289–1406 N; p < 0.01). No difference in the collagen type I concentration was detected (N.S.).

Conclusion

Porcine flexor and bovine extensor tendons are eligible substitutes with similar stiffness and high failure loads compared with human cadaveric semitendinosus tendons in in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Magen HE, Howell SM, Hull ML (1999) Structural properties of six tibial fixation methods for anterior cruciate ligament soft tissue grafts. Am J Sports Med 27:35–43

    CAS  PubMed  Google Scholar 

  2. Schliemann B, Lenschow S, Schürmann P et al (2012) Biomechanics of a new technique for minimal-invasive coracoclavicular ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 21:1176–1182. doi:10.1007/s00167-012-2041-3

    Article  PubMed  Google Scholar 

  3. Sakaguchi K, Tachibana Y, Oda H (2012) Biomechanical properties of porcine flexor tendon fixation with varying throws and stitch methods. Am J Sports Med 40:1641–1645. doi:10.1177/0363546512450406

    Article  PubMed  Google Scholar 

  4. Omar M, Petri M, Dratzidis A, El Nehmer S (2014) Biomechanical comparison of fixation techniques for medial collateral ligament anatomical augmented repair. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3326-5

    PubMed  Google Scholar 

  5. Jaglowski JR, Williams BT, Turnbull TL, et al (2016) High-load preconditioning of soft tissue grafts: an in vitro biomechanical bovine tendon model. Knee Surg Sports Traumatol Arthrosc 24:895–902. doi:10.1007/s00167-014-3410-x

    Article  PubMed  Google Scholar 

  6. Shin S-J, Campbell S, Scott J et al (2014) Simultaneous anatomic reconstruction of the acromioclavicular and coracoclavicular ligaments using a single tendon graft. Knee Surg Sports Traumatol Arthrosc 22:2216–2222. doi:10.1007/s00167-013-2569-x

    Article  PubMed  Google Scholar 

  7. Lorbach O, Kieb M, Domnick C et al (2014) Biomechanical evaluation of knee kinematics after anatomic single- and anatomic double-bundle ACL reconstructions with medial meniscal repair. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3071-9

    Google Scholar 

  8. Miyata K, Yasuda K, Kondo E et al (2000) Biomechanical comparisons of anterior cruciate ligament: reconstruction procedures with flexor tendon graft. J Orthop Sci 5:585–592

    Article  CAS  PubMed  Google Scholar 

  9. Langer MF, Wieskötter B, Hartensuer R et al (2015) Ligament reconstruction in extensor tendon dislocation. Oper Orthop Traumatol 27:394–403. doi:10.1007/s00064-015-0419-3

    Article  CAS  PubMed  Google Scholar 

  10. Langer MF, Hermann K, Oeckenpöhler S, Wieskötter B (2015) Restoration of ulnar collateral ligament stability of the metacarpophalangeal joint of the thumb. Oper Orthop Traumatol 27:380–393. doi:10.1007/s00064-015-0413-9

    Article  CAS  PubMed  Google Scholar 

  11. Nurmi JT, Sievänen H, Kannus P et al (2004) Porcine tibia is a poor substitute for human cadaver tibia for evaluating interference screw fixation. Am J Sports Med 32:765–771

    Article  PubMed  Google Scholar 

  12. Hausmann J-T, Vekszler G, Bijak M et al (2009) Biomechanical comparison of modified Kessler and running suture repair in 3 different animal tendons and in human flexor tendons. J Hand Surg Am 34:93–101. doi:10.1016/j.jhsa.2008.09.015

    Article  PubMed  Google Scholar 

  13. Janjic N, Ninkovic S, Harhaji V et al (2013) Biomechanical Properties of Porcine Tendon. The PSU-UNS International Conference on Engineering and Technology ICET

  14. Koob TJ, Vogel KG (1987) Site-related variations in glycosaminoglycan content and swelling properties of bovine flexor tendon. J Orthop Res 5:414–424. doi:10.1002/jor.1100050314

    Article  CAS  PubMed  Google Scholar 

  15. Omar M, Dratzidis A, Klintschar M et al (2016) Are porcine flexor digitorum profundus tendons suitable graft substitutes for human hamstring tendons in biomechanical in vitro-studies? Arch Orthop Trauma Surg 136:681–686. doi:10.1007/s00402-016-2425-9

    Article  PubMed  Google Scholar 

  16. Donahue TL, Gregersen C, Hull ML, Howell SM (2001) Comparison of viscoelastic, structural, and material properties of double-looped anterior cruciate ligament grafts made from bovine digital extensor and human hamstring tendons. J Biomech Eng 123:162–169

    Article  CAS  PubMed  Google Scholar 

  17. Pichler W, Tesch NP, Schwantzer G et al (2008) Differences in length and cross-section of semitendinosus and gracilis tendons and their effect on anterior cruciate ligament reconstruction: a cadaver study. J Bone Joint Surg Br 90:516–519. doi:10.1302/0301-620X.90B4.19994

    Article  CAS  PubMed  Google Scholar 

  18. Herbort M, Hoser C, Domnick C et al (2014) MPFL reconstruction using a quadriceps tendon graft: part 1: biomechanical properties of quadriceps tendon MPFL reconstruction in comparison to the Intact MPFL. A human cadaveric study. Knee 21:1169–1174. doi:10.1016/j.knee.2014.07.026

    Article  PubMed  Google Scholar 

  19. Herbort M, Heletta S, Raschke MJ et al (2012) Accidental perforation of the lateral femoral cortex in ACL reconstruction: an investigation of mechanical properties of different fixation techniques. Arthroscopy 28:382–389. doi:10.1016/j.arthro.2011.10.028

    Article  PubMed  Google Scholar 

  20. Domnick C, Herbort M, Raschke MJ et al (2015) Converting round tendons to flat tendon constructs: does the preparation process have an influence on the structural properties? Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3749-7

    Google Scholar 

  21. Eggers AK, Becker C, Weimann A et al (2007) Biomechanical evaluation of different fixation methods for tibial eminence fractures. Am J Sports Med 35:404–410. doi:10.1177/0363546506294677

    Article  PubMed  Google Scholar 

  22. Stange R, Kronenberg D, Timmen M et al (2013) Age-related bone deterioration is diminished by disrupted collagen sensing in integrin α2β1 deficient mice. Bone 56:48–54. doi:10.1016/j.bone.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  23. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39:175–191

    Article  PubMed  Google Scholar 

  24. Kannus P (2000) Structure of the tendon connective tissue. Scand J Med Sci Sports 10:312–320. doi:10.1034/j.1600-0838.2000.010006312.x/pdf

    Article  CAS  PubMed  Google Scholar 

  25. Gan Y, Xu D, Ding J, Xu Y (2012) Tension band wire fixation for anterior cruciate ligament avulsion fracture: biomechanical comparison of four fixation techniques. Knee Surg Sports Traumatol Arthrosc 20:909–915. doi:10.1007/s00167-011-1649-z

    Article  PubMed  Google Scholar 

  26. Hamner DL, Brown CH, Steiner ME et al (1999) Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. J Bone Joint Surg 81:549–557. doi:10.4103/2277-9175.98566

    CAS  PubMed  Google Scholar 

  27. Woo SL, Hollis JM, Adams DJ et al (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19:217–225

    Article  CAS  PubMed  Google Scholar 

  28. Brand JJ, Weiler A, Caborn DN et al (2000) Graft fixation in cruciate ligament reconstruction. Am J Sports Med 28:761–774

    PubMed  Google Scholar 

  29. Kousa P, Järvinen TL, Kannus P, Jarvinen M (2001) Initial fixation strength of bioabsorbable and titanium interference screws in anterior cruciate ligament reconstruction. Biomechanical evaluation by single cycle and cyclic loading. Am J Sports Med 29:420–425

    CAS  PubMed  Google Scholar 

  30. Kousa P, Järvinen TLN, Vihavainen M et al (2003) The fixation strength of six hamstring tendon graft fixation devices in anterior cruciate ligament reconstruction. Part I: femoral site. Am J Sports Med 31:174–181

    PubMed  Google Scholar 

  31. Herbort M, Tecklenburg K, Zantop T et al (2013) Single-bundle anterior cruciate ligament reconstruction: a biomechanical cadaveric study of a rectangular quadriceps and bone–patellar tendon–bone graft configuration versus a round hamstring graft. Arthroscopy 29:1981–1990. doi:10.1016/j.arthro.2013.08.030

    Article  PubMed  Google Scholar 

  32. Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139:663–670. doi:10.1210/endo.139.2.5751

    CAS  PubMed  Google Scholar 

  33. Sharma P, Maffulli N (2005) Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg 87:187–202. doi:10.2106/JBJS.D.01850

    Article  PubMed  Google Scholar 

  34. Fujii K, Yamagishi T, Nagafuchi T et al (1994) Biochemical properties of collagen from ligaments and periarticular tendons of the human knee. Knee Surg Sports Traumatol Arthrosc 2:229–233. doi:10.1007/BF01845593

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

C.D. was supported by a research fellowship from the Faculty of Medicine, Westphalian Wilhelms University Muenster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Domnick.

Additional information

C. Domnick and B. Wieskötter contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domnick, C., Wieskötter, B., Raschke, M.J. et al. Evaluation of biomechanical properties: are porcine flexor tendons and bovine extensor tendons eligible surrogates for human tendons in in vitro studies?. Arch Orthop Trauma Surg 136, 1465–1471 (2016). https://doi.org/10.1007/s00402-016-2529-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2529-2

Keywords

Navigation