Skip to main content

Advertisement

Log in

Patch-augmented rotator cuff repair: influence of the patch fixation technique on primary biomechanical stability

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

There is an ongoing debate about the potential of patch augmentation to improve biomechanical stability and healing associated with rotator cuff repair. The biomechanical properties of three different patch-augmented rotator cuff repair techniques were assessed in vitro and compared with a standard repair. Dermal collagen patch augmentation may increase the primary stability and strength of the repaired tendon in vitro, depending on the technique used for patch application.

Methods and materials

Forty cadaveric sheep shoulders with dissected infraspinatus tendons were randomized into four groups (n = 10/group) for tendon repair using a knotless double-row suture anchor technique. A xenologous dermal extracellular matrix patch was used for augmentation in the three test groups using an “integrated”, “cover”, or “hybrid” technique. Tendons were preconditioned, cyclically loaded from 10 to 30 N at 1 Hz, and then loaded monotonically to failure. Biomechanical properties and the mode of failure were evaluated.

Results

Patch augmentation significantly increased the maximum load at failure by 61 % in the “cover” technique test group (225.8 N) and 51 % in the “hybrid” technique test group (211.4 N) compared with the non-augmented control group (140.2 N) (P ≤ 0.015). For the test group with “integrated” patch augmentation, the load at failure was 28 % lower (101.6 N) compared with the control group (P = 0.043). There was no significant difference in initial and linear stiffness among the four experimental groups. The most common mode of failure was tendon pullout. No anchor dislocation, patch disruption or knot breakage was observed.

Conclusion

Additional patch augmentation with a collagen patch influences the biomechanical properties of a rotator cuff repair in a cadaveric sheep model. Primary repair stability can be significantly improved depending on the augmentation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Colvin AC, Egorova N, Harrison AK, Moskowitz A, Flatow EL (2012) National trends in rotator cuff repair. J Bone Joint Surg Am 94:227–233

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kannus P, Józsa L (1991) Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am 73:1507–1525

    CAS  PubMed  Google Scholar 

  3. Tashjian RZ, Hollins AM, Kim HM, Teefey SA, Middleton WD, Steger-May K, Galatz LM, Yamaguchi K (2010) Factors affecting healing rates after arthroscopic double-row rotator cuff repair. Am J Sports Med 38:2435–2442

    Article  PubMed  Google Scholar 

  4. Boileau P, Brassart N, Watkinson DJ, Carles M, Hatzidakis AM, Krishnan SG (2005) Arthroscopic repair of full-thickness tears of the supraspinatus: does the tendon really heal? J Bone Joint Surg Am 87(6):1229–1240

    Article  PubMed  Google Scholar 

  5. Lafosse L, Brozska R, Toussaint B, Gobezie R (2007) The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique. J Bone Joint Surg Am 89:1533–1541

    Article  PubMed  Google Scholar 

  6. Sugaya H, Maeda K, Matsuki K, Moriishi J (2005) Functional and structural outcome after arthroscopic full-thickness rotator cuff repair: single-row versus dual-row fixation. Arthroscopy 21:1307–1316

    Article  PubMed  Google Scholar 

  7. Duquin TR, Buyea C, Bisson LJ (2010) Which method of rotator cuff repair leads to the highest rate of structural healing? A systematic review. Am J Sports Med 38:835–841

    Article  PubMed  Google Scholar 

  8. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K (2004) The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 86:219–224

    PubMed  Google Scholar 

  9. Gerber C, Fuchs B, Hodler J (2000) The results of repair of massive tears of the rotator cuff. J Bone Joint Surg Am 82:505–515

    CAS  PubMed  Google Scholar 

  10. Mihata T, Watanabe C, Fukunishi K, Ohue M, Tsujimura T, Fujiwara K, Kinoshita M (2011) Functional and structural outcomes of single-row versus double-row versus combined double-row and suture-bridge repair for rotator cuff tears. Am J Sports Med 39:2091–2098

    Article  PubMed  Google Scholar 

  11. Gerhardt C, Hug K, Pauly S, Marnitz T, Scheibel M (2012) Arthroscopic single-row modified mason-allen repair versus double-row suture bridge reconstruction for supraspinatus tendon tears: a matched-pair analysis. Am J Sports Med 40:2777–2785

    Article  PubMed  Google Scholar 

  12. Rhee YG, Cho NS, Parke CS (2012) Arthroscopic rotator cuff repair using modified Mason-Allen medial row stitch: knotless versus knot-tying suture bridge technique. Am J Sports Med 40:2440–2447

    Article  PubMed  Google Scholar 

  13. Aurora A, McCarron JA, van den Bogert AJ, Gatica JE, Iannotti JP, Derwin KA (2012) The biomechanical role of scaffolds in augmented rotator cuff tendon repairs. J Shoulder Elbow Surg 21:1064–1071

    Article  PubMed  Google Scholar 

  14. Barber FA, Burns JP, Deutsch A, Labbé MR, Litchfield RB (2012) A prospective, randomized evaluation of acellular human dermal matrix augmentation for arthroscopic rotator cuff repair. Arthroscopy 28(1):8–15

    Article  PubMed  Google Scholar 

  15. Coons DA, Alan Barber F (2006) Tendon graft substitutes-rotator cuff patches. Sports Med Arthrosc 14:185–190

    Article  PubMed  Google Scholar 

  16. Mazzocca AD, Trainer G, McCarthy MB, Obopilwe E, Arciero RA (2012) Biologic enhancement of a common arthroscopic suture. Arthroscopy 28:390–396

    Article  PubMed  Google Scholar 

  17. McCarron JA, Milks RA, Chen X, Iannotti JP, Derwin KA (2010) Improved time-zero biomechanical properties using poly-L-lactic acid graft augmentation in a cadaveric rotator cuff repair model. J Shoulder Elbow Surg 19:688–696

    Article  PubMed  Google Scholar 

  18. Nho SJ, Delos D, Yadav H, Pensak M, Romeo AA, Warren RF, MacGillivray JD (2010) Biomechanical and biologic augmentation for the treatment of massive rotator cuff tears. Am J Sports Med 38:619–629

    Article  PubMed  Google Scholar 

  19. Aurora A, McCarron J, Iannotti JP, Derwin K (2007) Commercially available extracellular matrix materials for rotator cuff repairs: state of the art and future trends. J Shoulder Elbow Surg 16:S171–S178

    Article  PubMed  Google Scholar 

  20. Barber FA, Aziz-Jacobo J (2009) Biomechanical testing of commercially available soft-tissue augmentation materials. Arthroscopy 25:1233–1239

    Article  PubMed  Google Scholar 

  21. Cheung EV, Silverio L, Sperling JW (2010) Strategies in biologic augmentation of rotator cuff repair: a review. Clin Orthop Relat Res 468:1476–1484

    Article  PubMed  PubMed Central  Google Scholar 

  22. Barber FA, Herbert MA, Boothby MH (2008) Ultimate tensile failure loads of a human dermal allograft rotator cuff augmentation. Arthroscopy 24:20–24

    Article  PubMed  Google Scholar 

  23. Omae H, Steinmann SP, Zhao C, Zobitz ME, Wongtriratanachai P, Sperling JW, An KN (2012) Biomechanical effect of rotator cuff augmentation with an acellular dermal matrix graft: a cadaver study. Clin Biomech 27(8):789–792

    Article  Google Scholar 

  24. Park MC, Elattrache NS, Ahmad CS, Tibone JE (2006) “Transosseous-equivalent” rotator cuff repair technique. Arthroscopy 22:1360 e1–e5

  25. Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP (2006) Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical, and cellular properties. J Bone Joint Surg Am 88:2665–2672

    Article  PubMed  Google Scholar 

  26. Flury M (2012) Arthroscopic rotator cuff repair with patch augmentation. Oper Orthop Traumatol 24:486–494

    Article  CAS  PubMed  Google Scholar 

  27. Beitzel K, Chowaniec DM, McCarthy MB, Cote MP, Russell RP, Obopilwe E, Imhoff AB, Arciero RA, Mazzocca AD (2012) Stability of double-row rotator cuff repair is not adversely affected by scaffold interposition between tendon and bone. Am J Sports Med 40:1148–1154

    Article  PubMed  Google Scholar 

  28. Coons DA, Barber FA, Herbert MA (2006) Triple-loaded single-anchor stitch configurations: an analysis of cyclically loaded suture-tendon interface security. Arthroscopy 22:1154–1158

    Article  PubMed  Google Scholar 

  29. Nho SJ, Yadav H, Pensak M, Dodson CC, Good CR, MacGillivray JD (2007) Biomechanical fixation in arthroscopic rotator cuff repair. Arthroscopy 23:94–102

    Article  PubMed  Google Scholar 

  30. Burkhart SS, Adams CR, Burkhart SS, Schoolfield JD (2009) A biomechanical comparison of 2 techniques of footprint reconstruction for rotator cuff repair: the SwiveLock-FiberChain construct versus standard double-row repair. Arthroscopy 25:274–281

    Article  PubMed  Google Scholar 

  31. Gupta AK, Hug K, Boggess B, Gavigan M, Toth AP (2013) Massive or 2-tendon rotator cuff tears in active patients with minimal glenohumeral arthritis: clinical and radiographic outcomes of reconstruction using dermal tissue matrix xenograft. Am J Sports Med 41:872–879

    Article  PubMed  Google Scholar 

  32. Gerber C, Schneeberger AG, Perren SM, Nyffeler RW (1999) Experimental rotator cuff repair. A preliminary study. J Bone Joint Surg Am 81:1281–1290

    CAS  PubMed  Google Scholar 

  33. Bond JL, Dopirak RM, Higgins J, Burns J, Snyder SJ (2008) Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: technique and preliminary results. Arthroscopy 24(403–409):e1

    PubMed  Google Scholar 

  34. Anderl W, Heuberer PR, Laky B, Kriegleder B, Reihsner R, Eberhardsteiner J (2012) Superiority of bridging techniques with medial fixation on initial strength. Knee Surg Sports Traumatol Arthrosc 20:2559–2566

    Article  PubMed  Google Scholar 

  35. Lo IK, Burkhart SS (2003) Double-row arthroscopic rotator cuff repair: re-establishing the footprint of the rotator cuff. Arthroscopy 19:1035–1042

    Article  PubMed  Google Scholar 

  36. Cho CH, Lee SM, Lee YK, Shin HK (2014) Mini-open suture bridge repair with porcine dermal patch augmentation for massive rotator cuff tear: surgical technique and preliminary results. Clin Orthop Surg 6(3):329–335

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ciampi P, Scotti C, Nonis A, Vitali M, Di Serio C, Peretti GM, Fraschini G (2014) The benefit of synthetic versus biological patch augmentation in the repair of posterosuperior massive rotator cuff tears: a 3-year follow-up study. Am J Sports Med 42(5):1169–1175

    Article  PubMed  Google Scholar 

  38. Giannotti S, Ghilardi M, Dell’osso G, Magistrelli L, Bugelli G, Di Rollo F, Ricci G, Calabrese R, Siciliano G, Guido G (2014) Study of the porcine dermal collagen repair patch in morpho-functional recovery of the rotator cuff after minimum follow-up of 2.5 years. Surg Technol Int 24:348–352

    PubMed  Google Scholar 

  39. Proctor CS (2014) Long-term successful arthroscopic repair of large and massive rotator cuff tears with a functional and degradable reinforcement device. J Shoulder Elbow Surg 23(10):1508–1513

    Article  PubMed  Google Scholar 

  40. Sears BW, Choo A, Yu A, Greis A, Lazarus M (2015) Clinical outcomes in patients undergoing revision rotator cuff repair with extracellular matrix augmentation. Orthopedics 38(4):e292–e296

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like also to thank M. Wilhelmi, PhD for the preparation and editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, C., Spreiter, G., Audigé, L. et al. Patch-augmented rotator cuff repair: influence of the patch fixation technique on primary biomechanical stability. Arch Orthop Trauma Surg 136, 609–616 (2016). https://doi.org/10.1007/s00402-016-2436-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2436-6

Keywords

Navigation