Skip to main content
Log in

Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Superporous hydroxyapatite (HAp-S) is a novel bone substitute that contains three-dimensionally interconnected macropores with micropores, which stimulate bone ingrowth into the material.

Method

We investigated the in vivo behaviour of HAp-S by comparing its bioactivity and biomechanical properties with beta-tricalcium phosphates (β-TCP). HAp-S or β-TCP was implanted in the lateral femoral condyle of rabbits. In vivo bioactivity of each material, including bone ingrowth and material resorption, was quantitatively evaluated by micro-CT and the ultimate compressive strength of the bone–material composite was also measured. Micro-CT showed that bone ingrowth in the HAp-S group significantly increased over time, while no significant increase was observed after 8 weeks in the β-TCP group.

Results

Although both materials showed gradual material resorption, β-TCP resorption was significantly greater than HAp-S. The ultimate compressive strength in the HAp-S group significantly increased over time up to six times its original value, while there was no significant increase in the β-TCP group. These results show that HAp-S resorption is concurrent with bone ingrowth, resulting in increasing compressive strength over 12 weeks. On the other hand, β-TCP resorption is fast but unaccompanied by bone ingrowth; consequently, it remains relatively fragile at least in the early period after implantation. Although these highly porous materials themselves are structurally and mechanically similar, there are significant differences in in vivo behaviour depending on the material composition.

Conclusion

These findings should be kept in mind when choosing the highly porous ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ransford AO, Morley T, Edgar MA, Webb P, Passuti N, Chopin D, Morin C, Michel F, Garin C, Pries D (1998) Synthetic porous ceramic compared with autograft in scoliosis surgery: a prospective, randomized study of 341 patients. J Bone Joint Surg Br 80:13–18

    Article  PubMed  CAS  Google Scholar 

  2. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2:187–208

    Article  PubMed  CAS  Google Scholar 

  3. Brantigan JW, Cunningham BW, Warden K, McAfee PC, Steffee AD (1993) Compression strength of donor bone for posterior lumbar interbody fusion. Spine 18:1213–1221

    Article  PubMed  CAS  Google Scholar 

  4. Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151

    Article  PubMed  CAS  Google Scholar 

  5. Bucholz RW, Carlton A, Holmes R (1989) Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin Orthop Relat Res 240:53–62

    PubMed  Google Scholar 

  6. Nakano K, Harata S, Suetsuna F, Araki T, Itoh J (1992) Spinous process-splitting laminoplasty using hydroxyapatite spinous process spacer. Spine 17:S41–S43 (Phila Pa 19760)

    Article  PubMed  CAS  Google Scholar 

  7. Waite PD, Morawetz RB, Zeiger HE, Pincock JL (1989) Reconstruction of cranial defects with porous hydroxylapatite blocks. Neurosurg 25:214–217

    Article  CAS  Google Scholar 

  8. Ayers RA, Simske SJ, Nunes CR, Wolford LM (1998) Long-term bone ingrowth and residual microhardness of porous block hydroxyapatite implants in humans. J Oral Maxillofac Surg 56:297–1301

    Article  Google Scholar 

  9. Sakamoto M, Nakasu M, Matsumoto T, Okihana H (2007) Development of superporous hydroxyapatites and their examination with a culture of primary rat osteoblasts. J Biomed Mater Res A 82:38–42

    Google Scholar 

  10. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res. 4(3):433–456

    Article  PubMed  CAS  Google Scholar 

  11. Tsuruga E, Takita H, Itoh H, Wakisaka Y, Kuboki Y (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121:317–324

    Article  PubMed  CAS  Google Scholar 

  12. Itälä AI, Ylänen HO, Ekholm C, Karlsson KH, Aro HT (2001) Pore diameter of more than 100 micron is not requisite for bone ingrowth in rabbits. J Biomed Mater Res 58:679–683

    Article  PubMed  Google Scholar 

  13. Bohner M, Baumgart F (2004) Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes. Biomaterials 25:3569–3582

    Article  PubMed  CAS  Google Scholar 

  14. Galois L, Mainard D (2004) Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 70:598–603

    PubMed  Google Scholar 

  15. Miño-Fariña N, Muñoz-Guzón F, López-Peña M, Ginebra MP, Del Valle-Fresno S, Ayala D, González-Cantalapiedra A (2009) Quantitative analysis of the resorption and osteoconduction of a macroporous calcium phosphate bone cement for the repair of a critical size defect in the femoral condyle. Vet J 179:264–272

    Article  PubMed  Google Scholar 

  16. Fini M, Motta A, Torricelli P, Giavaresi G, Nicoli Aldini N, Tschon M, Giardino R, Migliaresi C (2005) The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 26:3527–3536

    Article  PubMed  CAS  Google Scholar 

  17. Soffer E, Ouhayoun JP, Meunier A, Anagnostou F (2006) Effects of autologous platelet lysates on ceramic particle resorption and new bone formation in critical size defects: the role of anatomical sites. J Biomed Mater Res B 79:86–94

    CAS  Google Scholar 

  18. He H, Yan W, Chen G, Lu Z (2008) Acceleration of de novo bone formation with a novel bioabsorbable film: a histomorphometric study in vivo. J Oral Pathol Med 37:378–382

    Article  PubMed  Google Scholar 

  19. Pelekanos S, Koumanou M, Koutayas SO (2009) Micro-CT evaluation of marginal fit of different In-Ceram alumina copings. Eur J Esthet Dent 4:278–292

    PubMed  Google Scholar 

  20. Chang BS, Lee CK, Hong KS, Youn HJ, Ryu HS, Chung SS, Park KW (2000) Osteoconduction at porous hydoroxyapatite with various pore configurations. Biomaterials 21:1291–1298

    Article  PubMed  CAS  Google Scholar 

  21. Gatti AM, Zaffe D, Poli GP (1990) Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects. Biomaterials 11:513–517

    Article  PubMed  CAS  Google Scholar 

  22. Shimazaki K, Mooney V (1985) Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. J Orthop Res 3:301–310

    Article  PubMed  CAS  Google Scholar 

  23. Bucholz RW, Carlton A, Holmes RE (1987) Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 18:323–334

    PubMed  CAS  Google Scholar 

  24. Eggli PS, Müller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 232:127–138

    PubMed  CAS  Google Scholar 

  25. Leutenegger A (1994) Integration and resorption of calcium phosphate ceramics in defect filling of fractures of the tibial head. Radiologic long-term results. Helv Chir Acta. 60:1061–1066

    PubMed  CAS  Google Scholar 

  26. Jensen SS, Broggini N, Hjørting-Hansen E, Schenk R, Buser D (2006) Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res. 17:237–243

    Article  PubMed  Google Scholar 

  27. Horch HH, Sader R, Pautke C, Neff A, Deppe H, Kolk A (2006) Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb) for bone regeneration in the reconstructive surgery of the jaws. Int J Oral Maxillofac Surg 35:708–713

    Article  PubMed  Google Scholar 

  28. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 23:883–894

    Article  PubMed  CAS  Google Scholar 

  29. Nade S, Armstrong L, McCartney E, Baggaley B (1983) Osteogenesis after bone and bone marrow transplantation. The ability of ceramic materials to sustain osteogenesis from transplanted bone marrow cells: preliminary studies. Clin Orthop Relat Res 181:255–263

    PubMed  Google Scholar 

  30. Daculsi G, Passuti N (1990) Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 11:86–87

    PubMed  CAS  Google Scholar 

  31. Galois L, Mainard D (2004) Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg 70:598–603

    PubMed  Google Scholar 

  32. Hing KA, Annaz B, Saeed S, Revell PA, Buckland T (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16:467–475

    Article  PubMed  CAS  Google Scholar 

  33. Yuan H, van Blitterswijk CA, de Groot K, de Bruijn JD (2006) A comparison of bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) implanted in muscle and bone of dogs at different time periods. J Biomed Mater Res A 78:139–147

    PubMed  CAS  Google Scholar 

  34. Habibovic P, Kruyt MC, Juhl MV, Clyens S, Martinetti R, Dolcini L, Theilgaard N, van Blitterswijk CA (2008) Comparative in vivo study of six hydroxyapatite-based bone graft substitutes. J Orthop Res 26:1363–1370

    Article  PubMed  CAS  Google Scholar 

  35. Guicheux J, Gauthier O, Aguado E, Pilet P, Couillaud S, Jegou D, Daculsi G, Heymann D (1998) Human growth hormone locally released in bone sites by calcium-phosphate biomaterial stimulates ceramic bone substitution without systemic effects: a rabbit study. J Bone Miner Res 13:739–748

    Article  PubMed  CAS  Google Scholar 

  36. Ono I, Yamashita T, Jin HY, Ito Y, Hamada H, Akasaka Y, Nakasu M, Ogawa T, Jimbow K (2004) Combination of porous hydroxyapatite and cationic liposomes as a vector for BMP-2 gene therapy. Biomaterials 25:4709–4718

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Ikeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okanoue, Y., Ikeuchi, M., Takemasa, R. et al. Comparison of in vivo bioactivity and compressive strength of a novel superporous hydroxyapatite with beta-tricalcium phosphates. Arch Orthop Trauma Surg 132, 1603–1610 (2012). https://doi.org/10.1007/s00402-012-1578-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1578-4

Keywords

Navigation