Skip to main content

Advertisement

Log in

Transpedicular plate fixator as effective system of spine stabilisation: biomechanical characteristics

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Zespol fixator, which was created in Poland by Ramatowski and Granowski, has an angular stable connection of screws and plate. These properties of this plate fixator, that is effective and not an expensive system of osteosynthesis of shaft of long bone widely used in Poland, impelled us to adapt it as a transpedicular plate fixator of spine.

Aim

The aim of our in vitro study was to measure loads acting on spine stabilized by transpedicular plate fixator and to determine if its stability is comparable with uninjured spine. We also hypothesized that the spine stability with examined fixator had similar properties as spine fixators constructed with screws and rods.

Materials and methods

We tested its biomechanical properties and compared it with a CD device by using specimens of four human spines. Each spine with damage induced in laboratory conditions was stabilised by one of those stabilisers in one (L4–L5) or two (Th12–L2) motion segments and subsequently were subject to load. The spines without and with one of transpedicular stabilization were subject to an unsymmetrical shift of +3/−4 mm for extension–compression and symmetrical shift for bending, in the frontal plane (+0.14/−0.14 rad) and the sagittal plane (+0.11/−0.11 rad), respectively.

Results

Loads during extension–compression and bending in the sagittal plane were similar to the uninjured spine for short stabilization by using both stabilizers and amounted to 92.3 and 98.26%, respectively, of the load range sums of healthy spines. For long stabilization these loads amounted to 93.2 and 84.4%, respectively. Only following short and long stabilization for both devices in case of bending in the frontal plane the increase in loads up to 144.2 and 163.3% of the range sums of uninjured spines was achieved.

Conclusion

It corroborates the fact that the application of the modified Zespol device for spine stabilisation provides the possibility of restoring its load transfer capacity similar to that in the healthy spine and comparable with the CD device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abumi K, Panjabi MM, Duranceau J (1989) Biomechanical evaluation of spinal fixation devices. III. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14(11):1249–1255

    Article  PubMed  CAS  Google Scholar 

  2. Asazuma T, Stokes JA, Moreland MS, Suzuki N (1990) Intersegmental spinal flexibility with lumbosacral instrumentation. An in vitro biomechanical investigation. Spine 15(11):1153–1158

    Article  PubMed  CAS  Google Scholar 

  3. Ashman RB, Galpin RD, Corin JD, Johnston CE 2nd (1989) Biomechanical analysis of pedicle screw instrumentation systems in corpectomy model. Spine 14(12):1398–1405

    Article  PubMed  CAS  Google Scholar 

  4. Boos N, Marchesi D, Aebi M (1992) Survivorship analysis of pedicular fixation systems in the treatment of degenerative disorders of the lumbar spine: a comparison of Cotrel–Dubousset instrumentation and the AO internal fixator. J Spinal Disord 5(4):403–409

    Article  PubMed  CAS  Google Scholar 

  5. Brodke DS, Bachus KN, Mohr RA, Nguyen BK (2001) Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs: a biomechanical analysis. Spine J 1(5):373–379

    Article  PubMed  CAS  Google Scholar 

  6. Dickmann CA, Fessler RG, McMillan M, Haid RW (1992) Transpedicular screw-rod fixation of the lumbar spine: operative technique and outcome in 104 cases. J Neurosurg 77(6):860–870

    Google Scholar 

  7. Eger W, Kluger P, Claes L, Wilke HJ (1999) Characteristics of an extended internal fixation system for polysegmental transpedicular reduction and stabilisation of the thoracic, lumbar, and lumbosacral spine. Eur Spine J 8(1):61–69

    Article  PubMed  CAS  Google Scholar 

  8. Ferguson RL, Tencer AF, Woodard P, Allen BL (1988) Biomechanical comparisons of spinal fracture models and the stabilizing effects of posterior instrumentations. Spine 13(5):453–460

    Article  PubMed  CAS  Google Scholar 

  9. Granowski R, Ramotowski W, Kaminski E, Pilawski K (1984) [“Zespol”—a new type of osteosynthesis. I. An internal self-compressing stabilizer of bone fragments]. Chir Narzadow Ruchu Ortop Pol 49(4):301–305

    PubMed  CAS  Google Scholar 

  10. Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of anterior and posterior instrumentation systems after corpectomy. A calf-spine model. J Bone Joint Surg [Am] 70(8):1182–1191

    CAS  Google Scholar 

  11. Gurr KR, McAfee PC, Shih CM (1988) Biomechanical analysis of posterior instrumentation systems after decompressive laminectomy. An unstable calf-spine model. J Bone Joint Surg Am 70(5):680–691

    PubMed  CAS  Google Scholar 

  12. Gwon JK, Chen J, Lim TH, Han JS, Weinstein JN, Goel VK (1991) In vitro comparative biomechanical analysis of transpedicular screw instrumentations in the lumbar region of the human spine. J Spinal Disord 4(4):437–443

    PubMed  CAS  Google Scholar 

  13. Lim TH, An HS, Hong JH, Ahn JY, You JW, Eck J, McGrady LM (1997) Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model. Spine 22(3):261–266

    Article  PubMed  CAS  Google Scholar 

  14. Lund T, Nydegger T, Rathonyi G, Nolte LP, Schlenzka D, Oxland TR (2003) Three-dimensional stabilisation provided by the external spinal fixator compared to two internal fixation devices: a biomechanical in vitro flexibility study. Eur Spine J 12(5):474–479

    Article  PubMed  Google Scholar 

  15. Marqulies JY, Thampi SP, Bitan FD, Cora DC (1999) Practical biomechanical considerations for spine implant testing. Chir Narzadow Ruchu Ortop Pol 64(3):347–364

    Google Scholar 

  16. Nachemson AL (1981) Disc pressure measurements. Spine 6(1):93–97

    Article  PubMed  CAS  Google Scholar 

  17. Pawlowski P, Topolinski T, Wocianiec R (2006) Grip for in vitro strength tests of spines or spine-internal spine fixator sets. Eng Mech 13(1):41–48

    Google Scholar 

  18. Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine 13(10):1129–1134

    PubMed  CAS  Google Scholar 

  19. Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3(3):292–300

    Article  PubMed  CAS  Google Scholar 

  20. Pfeiffer M, Hoffman H, Goel VK, Weinstein JN, Griss P (1997) In vitro testing of a new transpedicular stabilization technique. Eur Spine J 6(4):249–255

    Article  PubMed  CAS  Google Scholar 

  21. Przybyszewski J, Podraza Z, Ziomek M, Karas W (1992) Universal hip fixator “Zespol”. Construction of the fixator, principles of function, instrumentation, surgical technique, indications and results of treatment. Chir Narzadow Ruchu Ortop Pol 57(1–3):256–262

    PubMed  CAS  Google Scholar 

  22. Ramotowski W, Granowski R, Pilawski K, Cieplak J, Karas W (1984) “Zespol”–a new type of osteosynthesis. II. Indications, instruments and surgical technics. Chir Narzadow Ruchu Ortop Pol 49(4):307–311

    PubMed  CAS  Google Scholar 

  23. Ramotowski W, Granowski R (1984) “Zespol”–a new type of osteosynthesis. III. Results of treatment. Chir Narzadow Ruchu Ortop Pol 49(4):313–318

    PubMed  CAS  Google Scholar 

  24. Ramotowski W, Granowski R. (1991) Zespol. An original method of stable osteosynthesis. Clin Orthop Relat Res 272:67–75

    PubMed  Google Scholar 

  25. Rohlmann A, Bergmann G, Graichen F, Mayer HM (1995) Telemeterized load measurement using instrumented spinal internal fixators in a patient with degenerative instability. Spine 20(24):2683–2689

    Article  PubMed  CAS  Google Scholar 

  26. Rohlmann A, Zander T, Bergmann G (2005) Comparison of the biomechanical effects of posterior and anterior spine-stabilizing implants. Eur Spine J 14(5):445–453

    Article  PubMed  Google Scholar 

  27. Shono Y, Kaneda K, Yamamoto I (1991) A biomechanical analysis of Zielke, Kaneda, and Cotrel–Dubousset instrumentation in thoracolumbar scoliosis. A calf spine model. Spine 16(11):1305–1311

    Article  PubMed  CAS  Google Scholar 

  28. Steffee AD, Brantigan JW (1993) The variable screw placement spinal fixation system. Report of a prospective study of 250 patients enrolled in food and drug administration clinical trials. Spine 18(9):1160–1172

    Article  PubMed  CAS  Google Scholar 

  29. Szostek S, Szust A, Pezowicz C, Majcher P, Będziński R (2004) Animal models in biomechanical spine investigations. Bull Vet Inst 48(2):163–168

    Google Scholar 

  30. Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251(1):15–19

    Article  PubMed  CAS  Google Scholar 

  31. Wilke HJ, Krischak ST, Wenger KH, Claes LE (1997) Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data. Eur Spine J 6(2):129–137

    Article  PubMed  CAS  Google Scholar 

  32. Zucherman J, Hsu K, White A, Wynne G (1988) Early results of spinal fusion using variable spine plating system. Spine 13(5):570–579

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Mątewski.

Additional information

The study was carried out with financial support of statutory fund from Collegium Medicum in Bydgoszcz and University of Technology and Agriculture in Bydgoszcz. We declare that our experimental study was carried out on complying with the current law and the ethics commission’s approval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawłowski, P., Araszkiewicz, M., Topoliński, T. et al. Transpedicular plate fixator as effective system of spine stabilisation: biomechanical characteristics. Arch Orthop Trauma Surg 128, 1127–1136 (2008). https://doi.org/10.1007/s00402-008-0627-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0627-5

Keywords

Navigation