Skip to main content

Advertisement

Log in

Volumetric measurement of periprosthetic bone remodeling: prospective 5 years follow-up after cemented total hip arthroplasty

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Periprosthetic bone remodeling after total hip arthroplasty (THA) is a well recognized phenomenon. Many authors have published osteodensitometric data with DEXA analysis. This study based on computerized tomography (CT).

Materials and methods

The objective of the current project is to collect prospective volumetric bone density data with a clinical CT study in six patients after cemented THA (titanium alloy stem). The follow-up time is 5 years. A data set of about 100,000 bone voxels for each femur was collected. Bone density was observed by dint of an osteodensitometric computer program. The median results were shown in seven regions of interest (ROI) around the prosthesis stem, according to Gruen.

Results

The statistical analysis of the six cases after 60 months with respect to the postoperative control demonstrated a significantly lower density in ROI 2 (−125.5HU, P = 0.014), ROI 3 (−116.7HU, P = 0.023), ROI 4 (−54.5HU, P = 0.023), ROI 5 (−90.9HU, P = 0.014) and ROI 6 (−104.9HU, P = 0.014). Maximum density decrease was observed in ROI 2 and 3. The statistical analysis of the six cases after 60 months with respect to the 24 months control demonstrated a significantly lower density in ROI 2 (−62.6HU, P = 0.014), ROI 5 (−62.9HU, P = 0.023). There was a density decrease in ROI 3, 4, 6, 7 which was not significant and a slight increase in ROI 1.

Conclusion

To our knowledge, this is the first collection of fully prospective 5 years 3D periprosthetic density data. The CT method used in the study presented here measures three-dimensionally, while the frequently used DEXA (dual X-ray absorptiometry) method measures two-dimensionally. The data are also unique as they are suitable for direct patient-specific 3D finite element meshing and biomechanical calculation. They can be graphically post-processed in order to obtain cross-sectional or 3D displays of density patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aldinger PR, Sabo D, Pritsch M, Thomsen M, Mau H, Ewerbeck V, Breusch SJ (2003) Pattern of periprosthetic bone remodelling around stable uncemented tapered hip stems: a prospective 84-month follow-up study and a median 156-month cross-sectional study with DXA. Calcif Tissue Int 73:115–121

    Article  PubMed  CAS  Google Scholar 

  2. Amstutz HC, Thomas BJ, Jinnah R (1984) Treatment of primary osteoarthritis of the hip: a comparison of total joint and surface replacement arthroplasty. J Bone Joint Surg Am 66:228

    PubMed  CAS  Google Scholar 

  3. Ang KC, Das De S, Goh JC, Low SL, Bose K (1997) Periprosthetic bone remodeling after cementless total hip replacement. A prospective comparison of two different implant designs. J Bone Joint Surg 79-B:675–679

    Article  Google Scholar 

  4. Boden SD, Goodenough DJ, Stockham CD, Jacobs E, Dina T, Allman RM (1989) Precise measurement of vetebral bone density using computed tomography without the use of an external reference phantom. J Digit Imaging 2:31–38

    Article  PubMed  CAS  Google Scholar 

  5. Brodner W, Bitzan P, Lomoschitz F, Krepler P, Jankovsky R, Lehr S, Kainberger F, Gottsauner-Wolf F (2004) Changes in bone mineral density in the proximal femur after cementless total hip arthroplasty. J Bone Joint Surg 86-B:20–26

    Google Scholar 

  6. Carter DR, Fyhrie DR, Whalen RT (1987) Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J Biomech 20:785–794

    Article  PubMed  CAS  Google Scholar 

  7. Cohen B, Rushton N (1995) Bone remodeling in the proximal femur after Charnley total hip arthroplasty. J Bone Joint Surg 77B:815–819

    Google Scholar 

  8. Cowin SC, Hegedus DH (1976) Bone remodeling I: a theory of adaptive elasticity. J Elast 6:313–326

    Article  Google Scholar 

  9. Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg 69-B:45–55

    Google Scholar 

  10. Engh CA, Sychterz C, Engh C (1999) Factors affecting femoral bone remodeling after cementless total hip arthroplasty. J Arthroplasty 14:637–644

    Article  PubMed  Google Scholar 

  11. Frost HM (1964) The laws of bone structure. C.C. Thomas, Springfield

    Google Scholar 

  12. Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components. Clin Orthop Relat Res 141:17–27

    PubMed  Google Scholar 

  13. Gudmungsdottir H, Jonsdottir B, Kristinsson S, Johannesson A, Goddenough D, Sigurdsson G (1993) Vertebral bone density in Islandic women using quantitative computed tomography without an external reference phantom. Osteoporosis Int 3:84–89

    Article  Google Scholar 

  14. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). Part I. Description of the system. Br J Radiol 46:1016–1022

    Article  PubMed  CAS  Google Scholar 

  15. Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Sloof TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20:1135–1150

    Article  PubMed  CAS  Google Scholar 

  16. Kerner J, Huiskes R, van Lenthe GB, Weinans H, van Rietbergen B, Engh CA, Amis AA (1999) Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling. J Biomech 32:695–703

    Article  PubMed  CAS  Google Scholar 

  17. Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RW (1993) Dual-energy X-ray absorptiometry measurement of bone mineral density around porous-coated cementless femoral implants. Methods and preliminary results. J Bone Joint Surg 75-B:279–287

    Google Scholar 

  18. Kiratli BJ, Heiner JP, McBeath AA, Wilson MA (1992) Determination of bone mineral density by dual X-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res 10:836–844

    Article  PubMed  CAS  Google Scholar 

  19. Kröger H, Venesmaa P, Jurvelin J, Miettinen H, Suomalainen O, Alhava E (1998) Bone density at the proximal femur after total hip arthroplasty. Clin Orthop Relat Res 352:66–74

    PubMed  Google Scholar 

  20. Lengsfeld M, Günther D, Pressel T, Leppek R, Schmitt J, Griss P (2002) Validation data for periprosthetic bone remodelling theories. J Biomech 35:1553–1564

    Article  PubMed  Google Scholar 

  21. Marchetti ME, Steinberg GG, Greene JM, Jenis LG, Baran DT (1996) A prospective study of proximal femur bone mass following cemented and uncemented hip arthroplasty. J Bone Mineral Res 11:1033–1039

    Article  CAS  Google Scholar 

  22. Martini F, Lebherz C, Mayer F, Leichtle U, Kremling E, Sell S (2000) Precision of the measurements of periprosthetic bone mineral density in hips with a custom-made femoral stem. J Bone Joint Surg 82-B:1065–1071

    Article  Google Scholar 

  23. McCarthy CK, Steinberg GG, Agren M, Leahey D, Wyman E, Baran DT (1991) Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg 73-B:774–778

    Google Scholar 

  24. Merle d’Aubigné R, Postel M (1954) Functional results of arthroplasty with acrylic prosthesis. J Bone Joint Surg 36-A:451–475

    Google Scholar 

  25. Muller S, Irgens F, Aemondt A (20005) A quantitative and qualitative analysis of bone remodeling around custom uncemented femoral stems: a five-year DEXA follow-up. Clin Biomech 20(3):277–282

    Article  Google Scholar 

  26. Okano T, Hagino H, Otsuka T, Teshima R, Yamamoto K, Hirano Y, Nakamura K (2002) Measurement of periprosthetic bone mineral density by dual-energy x-ray absorptiometry is useful for estimating fixation between the bone and the prosthesis in an early stage. J Arthroplasty 17:49–55

    Article  PubMed  CAS  Google Scholar 

  27. Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin

    Google Scholar 

  28. Rahmy AIA, Gosens T, Blake GM, Tonino A, Fogelman I (2004) Periprosthetic bone remodeling of two types of uncemented femoral implant with proximal hydroxyapatite coating: a 3-year follow-up study addressing the influence of prosthesis design and preoperative bone density on periprosthetic bone loss. Osteoporos Int 15:281–289

    Article  PubMed  CAS  Google Scholar 

  29. Rho JY, Hobatho MC, Ashman RB (1995) Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys 17:347–355

    Article  PubMed  CAS  Google Scholar 

  30. Sabo D, Reiter A, Simank HG, Thomsen M, Lukoschek M, Ewerbeck V (1998) Periprosthetic mineralization around cementless total hip endoprosthesis: longitudinal study and cross-sectional study on titanium threaded acetabular cup and cementless Spotorno stem with DEXA. Calcif Tissue Int 62:177–82

    Article  PubMed  CAS  Google Scholar 

  31. Schmidt R, Freund J, Hirschfelder H, Pitto RP (2000) Osteodensitometry in uncemented total hip arthroplasty using computertomography. Biomed Technik 45:70–74

    CAS  Google Scholar 

  32. Schmidt R, Müller L, Nowak TE, Pitto RP (2003) Clinical outcome and periprosthetic bone remodelling of an uncemented femoral component with taper design. Int Orthop Oct 24 (Epub ahead of print)

  33. Schwarz EM, Campbell D, Totterman S, Boyd A, O’Keefe RJ, Looney RJ (2003) Use of volumetric computerized tomography as a primary outcome measure to evaluate drug efficacy in the prevention of peri-prosthetic osteolysis: a 1-year clinical pilot of eternercept vs. placebo. J Orthop Res 21:1049–1055

    Article  PubMed  CAS  Google Scholar 

  34. Sutherland CJ, Gayou DE (1996) Artifacts and thresholding in x-ray CT of a cortical bone and titanium composite. J Comput Assist Tomogr 20:496–503

    Article  PubMed  CAS  Google Scholar 

  35. Tanzer M, Kantor S, Rosenthall L, Bobyn JD (2001) Femoral remodeling after porous-coated total hip arthroplasty with and without hydroxyapatite-tricalcium phosphate coating: a prospective randomized trial. J Arthroplasty 16:552–558

    Article  PubMed  CAS  Google Scholar 

  36. Turner AWL, Gillies RM, Sekel R, Morris P, Bruce W, Walsh WR (2005) Computational bone remodeling simulations and comparisons with DEXA results. J Orthop Res 23:705–712

    Article  PubMed  CAS  Google Scholar 

  37. Venessma PK, Kröger HP, Jurvelin JS, Miettinen HJA, Suomalainen OT, Alhava EM (2003) Periprosthetic bone loss after cemented total hip arthroplasty. Acta Orthop Scand 74:31–36

    Article  Google Scholar 

  38. Wolff J (1892) Das Gesetz der Transformation der Knochen. Hirschwald, Berlin

    Google Scholar 

  39. Zannoni C, Viceconti M, Pierotti L, Capello A (1998) Analysis of titanium induced CT artifacts in the development of biomechanical finite element models. Med Eng Phys 20:653–659

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors express gratitude for the funding received from the Deutsche Forschungsgemeinschaft (DFG Le-1065/1–1). We wish to thank Mrs. K. Gröning for technical assistance and Dr Helen Steele for discussing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Lengsfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burchard, R., Leppek, R., Schmitt, J. et al. Volumetric measurement of periprosthetic bone remodeling: prospective 5 years follow-up after cemented total hip arthroplasty. Arch Orthop Trauma Surg 127, 361–368 (2007). https://doi.org/10.1007/s00402-007-0293-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-007-0293-z

Keywords

Navigation