Skip to main content

Advertisement

Log in

Large-scale validation of skin prion seeding activity as a biomarker for diagnosis of prion diseases

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Definitive diagnosis of sporadic Creutzfeldt–Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrPSc). Our previous study revealed that PrPSc-seeding activity (PrPSc-SA) is detectable in skin of sCJD patients by an ultrasensitive PrPSc seed amplification assay (PrPSc-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2–3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls. The skin samples were analyzed for PrPSc-SA by RT-QuIC assay. The results were compared with demographic information, clinical manifestations, cerebrospinal fluid (CSF) PrPSc-SA, other laboratory tests, subtypes of prion diseases defined by the methionine (M) or valine (V) polymorphism at residue 129 of PrP, PrPSc types (#1 or #2), and gene mutations in deceased patients. RT-QuIC assays of the cohort #1 by two independent laboratories gave 87.3% or 91.3% sensitivity and 94.7% or 100% specificity, respectively. The cohort #2 showed sensitivity of 89.4% and specificity of 95.5%. RT-QuIC of CSF available from 212 cases gave 89.7% sensitivity and 94.1% specificity. The sensitivity of skin RT-QuIC was subtype dependent, being highest in sCJDVV1-2 subtype, followed by VV2, MV1-2, MV1, MV2, MM1, MM1-2, MM2, and VV1. The skin area next to the ear gave highest sensitivity, followed by lower back and apex of the head. Although no difference in brain PrPSc-SA was detected between the cases with false negative and true positive skin RT-QuIC results, the disease duration was significantly longer with the false negatives [12.0 ± 13.3 (months, SD) vs. 6.5 ± 6.4, p < 0.001]. Our study validates skin PrPSc-SA as a biomarker for the detection of prion diseases, which is influenced by the PrPSc types, PRNP 129 polymorphisms, dermatome sampled, and disease duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and material availability

All materials used in this study will be made available subject to a materials transfer agreement.

References

  1. Artikis E, Kraus A, Caughey B (2022) Structural biology of ex vivo mammalian prions. J Biol Chem 298:102181. https://doi.org/10.1016/j.jbc.2022.102181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bizzi A, Pascuzzo R, Blevins J, Moscatelli MEM, Grisoli M, Lodi R et al (2021) Subtype diagnosis of sporadic Creutzfeldt-Jakob disease with diffusion magnetic resonance imaging. Ann Neurol 89:560–572. https://doi.org/10.1002/ana.25983

    Article  CAS  PubMed  Google Scholar 

  3. Bongianni M, Orru C, Groveman BR, Sacchetto L, Fiorini M, Tonoli G et al (2017) Diagnosis of human prion disease using real-time quaking-induced conversion testing of olfactory mucosa and cerebrospinal fluid samples. JAMA Neurol 74:155–162. https://doi.org/10.1001/jamaneurol.2016.4614

    Article  PubMed  Google Scholar 

  4. Bougard D, Brandel JP, Belondrade M, Beringue V, Segarra C, Fleury H, Laplanche JL, Mayran C, Nicot S, Green A et al (2016) Detection of prions in the plasma of presymptomatic and symptomatic patients with variant Creutzfeldt-Jakob disease. Sci Transl Med 8:370ra182. https://doi.org/10.1126/scitranslmed.aag1257

  5. Cramm M, Schmitz M, Karch A, Zafar S, Varges D, Mitrova E et al (2015) Characteristic CSF prion seeding efficiency in humans with prion diseases. Mol Neurobiol 51:396–405. https://doi.org/10.1007/s12035-014-8709-6

    Article  CAS  PubMed  Google Scholar 

  6. Ding M, Teruya K, Zhang W, Lee HW, Yuan J, Oguma A et al (2021) Decrease in skin prion-seeding activity of prion-infected mice treated with a compound against human and animal prions: a first possible biomarker for prion therapeutics. Mol Neurobiol 58:4280–4292. https://doi.org/10.1007/s12035-021-02418-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Douet JY, Zafar S, Perret-Liaudet A, Lacroux C, Lugan S, Aron N et al (2014) Detection of infectivity in blood of persons with variant and sporadic Creutzfeldt-Jakob disease. Emerg Infect Dis 20:114–117. https://doi.org/10.3201/eid2001.130353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Foutz A, Appleby BS, Hamlin C, Liu X, Yang S, Cohen Y et al (2017) Diagnostic and prognostic value of human prion detection in cerebrospinal fluid. Ann Neurol 81:79–92. https://doi.org/10.1002/ana.24833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fox BG, Blommel PG (2009) Autoinduction of protein expression. Curr Protoc Protein Sci Chapter 5: Unit 5 23. https://doi.org/10.1002/0471140864.ps0523s56

  10. Gambetti P, Dong Z, Yuan J, Xiao X, Zheng M, Alshekhlee A et al (2008) A novel human disease with abnormal prion protein sensitive to protease. Ann Neurol 63:697–708. https://doi.org/10.1002/ana.21420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gambetti P, Kong Q, Zou W, Parchi P, Chen SG (2003) Sporadic and familial CJD: classification and characterisation. Br Med Bull 66:213–239. https://doi.org/10.1093/bmb/66.1.213

    Article  CAS  PubMed  Google Scholar 

  12. Groveman BR, Kraus A, Raymond LD, Dolan MA, Anson KJ, Dorward DW et al (2015) Charge neutralization of the central lysine cluster in prion protein (PrP) promotes PrP(Sc)-like folding of recombinant PrP amyloids. J Biol Chem 290:1119–1128. https://doi.org/10.1074/jbc.M114.619627

    Article  CAS  PubMed  Google Scholar 

  13. Hall D, Edskes H (2004) Silent prions lying in wait: a two-hit model of prion/amyloid formation and infection. J Mol Biol 336:775–786. https://doi.org/10.1016/j.jmb.2003.12.004

    Article  CAS  PubMed  Google Scholar 

  14. Hermann P, Appleby B, Brandel JP, Caughey B, Collins S, Geschwind MD et al (2021) Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol 20:235–246. https://doi.org/10.1016/S1474-4422(20)30477-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Honda H, Mori S, Watanabe A, Sasagasako N, Sadashima S, Dong T et al (2021) Abnormal prion protein deposits with high seeding activities in the skeletal muscle, femoral nerve, and scalp of an autopsied case of sporadic Creutzfeldt-Jakob disease. Neuropathology 41:152–158. https://doi.org/10.1111/neup.12717

    Article  CAS  PubMed  Google Scholar 

  16. Hoyt F, Alam P, Artikis E, Schwartz CL, Hughson AG, Race B et al (2022) Cryo-EM of prion strains from the same genotype of host identifies conformational determinants. PLoS Pathog 18:e1010947. https://doi.org/10.1371/journal.ppat.1010947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoyt F, Standke HG, Artikis E, Schwartz CL, Hansen B, Li K et al (2022) Cryo-EM structure of anchorless RML prion reveals variations in shared motifs between distinct strains. Nat Commun 13:4005. https://doi.org/10.1038/s41467-022-30458-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058. https://doi.org/10.1016/0092-8674(93)90635-4

    Article  CAS  PubMed  Google Scholar 

  19. Kraus A, Hoyt F, Schwartz CL, Hansen B, Artikis E, Hughson AG et al (2021) High-resolution structure and strain comparison of infectious mammalian prions. Mol Cell 81(4540–4551):e4546. https://doi.org/10.1016/j.molcel.2021.08.011

    Article  CAS  Google Scholar 

  20. Lattanzio F, Abu-Rumeileh S, Franceschini A, Kai H, Amore G, Poggiolini I et al (2017) Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol 133:559–578. https://doi.org/10.1007/s00401-017-1683-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mammana A, Baiardi S, Rossi M, Franceschini A, Donadio V, Capellari S et al (2020) Detection of prions in skin punch biopsies of Creutzfeldt-Jakob disease patients. Ann Clin Transl Neurol 7:559–564. https://doi.org/10.1002/acn3.51000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manka SW, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J et al (2023) A structural basis for prion strain diversity. Nat Chem Biol 19:607–613. https://doi.org/10.1038/s41589-022-01229-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manka SW, Zhang W, Wenborn A, Betts J, Joiner S, Saibil HR, Collinge J, Wadsworth JDF (2022) 2.7 A cryo-EM structure of ex vivo RML prion fibrils. Nat Commun 13:4004. https://doi.org/10.1038/s41467-022-30457-7

  24. Moda F, Gambetti P, Notari S, Concha-Marambio L, Catania M, Park KW et al (2014) Prions in the urine of patients with variant Creutzfeldt-Jakob disease. N Engl J Med 371:530–539. https://doi.org/10.1056/NEJMoa1404401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Notari S, Qing L, Pocchiari M, Dagdanova A, Hatcher K, Dogterom A et al (2012) Assessing prion infectivity of human urine in sporadic Creutzfeldt-Jakob disease. Emerg Infect Dis 18:21–28. https://doi.org/10.3201/eid1801.110589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orrú CD, Groveman BR, Raymond LD, Hughson AG, Nonno R, Zou W et al (2015) Bank vole prion protein as an apparently universal substrate for RT-QuIC-based detection and discrimination of prion strains. PLoS Pathog 11:e1004983. https://doi.org/10.1371/journal.ppat.1004983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orru CD, Groveman BR, Foutz A, Bongianni M, Cardone F, McKenzie N et al (2020) Ring trial of 2nd generation RT-QuIC diagnostic tests for sporadic CJD. Ann Clin Transl Neurol 7:2262–2271. https://doi.org/10.1002/acn3.51219

    Article  PubMed  PubMed Central  Google Scholar 

  28. Orru CD, Groveman BR, Hughson AG, Manca M, Raymond LD, Raymond GJ et al (2017) RT-QuIC assays for prion disease detection and diagnostics. Methods Mol Biol 1658:185–203. https://doi.org/10.1007/978-1-4939-7244-9_14

    Article  CAS  PubMed  Google Scholar 

  29. Orru CD, Yuan J, Appleby BS, Li B, Li Y, Winner D, Wang Z, Zhan YA, Rodgers M, Rarick J et al (2017) Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aam7785

  30. Parchi P, Giese A, Capellari S, Brown P, Schulz-Schaeffer W, Windl O et al (1999) Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 46:224–233

    Article  CAS  PubMed  Google Scholar 

  31. Parchi P, Zou W, Wang W, Brown P, Capellari S, Ghetti B et al (2000) Genetic influence on the structural variations of the abnormal prion protein. Proc Natl Acad Sci U S A 97:10168–10172. https://doi.org/10.1073/pnas.97.18.10168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95:13363–13383. https://doi.org/10.1073/pnas.95.23.13363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raymond GJ, Race B, Orru CD, Raymond LD, Bongianni M, Fiorini M et al (2020) Transmission of CJD from nasal brushings but not spinal fluid or RT-QuIC product. Ann Clin Transl Neurol 7:932–944. https://doi.org/10.1002/acn3.51057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rhoads DD, Wrona A, Foutz A, Blevins J, Glisic K, Person M et al (2020) Diagnosis of prion diseases by RT-QuIC results in improved surveillance. Neurology 95:e1017–e1026. https://doi.org/10.1212/WNL.0000000000010086

    Article  CAS  PubMed  Google Scholar 

  35. Sano K, Satoh K, Atarashi R, Takashima H, Iwasaki Y, Yoshida M et al (2013) Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time QUIC assay. PLoS ONE 8:e54915. https://doi.org/10.1371/journal.pone.0054915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmitz M, Silva Correia S, Hermann P, Maass F, Goebel S, Bunck T et al (2023) Detection of prion protein seeding activity in tear fluids. N Engl J Med 388:1816–1817. https://doi.org/10.1056/NEJMc2214647

    Article  PubMed  Google Scholar 

  37. Schoch G, Seeger H, Bogousslavsky J, Tolnay M, Janzer RC, Aguzzi A et al (2006) Analysis of prion strains by PrPSc profiling in sporadic Creutzfeldt-Jakob disease. PLoS Med 3:e14. https://doi.org/10.1371/journal.pmed.0030014

    Article  CAS  PubMed  Google Scholar 

  38. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234. https://doi.org/10.1016/j.pep.2005.01.016

    Article  CAS  PubMed  Google Scholar 

  39. Wang Z, Becker K, Donadio V, Siedlak S, Yuan J, Rezaee M et al (2020) Skin alpha-synuclein aggregation seeding activity as a novel biomarker for Parkinson disease. JAMA Neurol 78:1–11. https://doi.org/10.1001/jamaneurol.2020.3311

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wang Z, Manca M, Foutz A, Camacho MV, Raymond GJ, Race B et al (2019) Early preclinical detection of prions in the skin of prion-infected animals. Nat Commun 10:247. https://doi.org/10.1038/s41467-018-08130-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao K, Yang X, Zhou W, Chen C, Shi Q, Dong X (2021) Validation and application of skin RT-QuIC to patients in China with probable CJD. Pathogens 10. https://doi.org/10.3390/pathogens10121642

  42. Yuan J, Xiao X, McGeehan J, Dong Z, Cali I, Fujioka H et al (2006) Insoluble aggregates and protease-resistant conformers of prion protein in uninfected human brains. J Biol Chem 281:34848–34858. https://doi.org/10.1074/jbc.M602238200

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W, Xiao X, Ding M, Yuan J, Foutz A, Moudjou M, Kitamoto T, Langeveld JPM, Cui L, Zou WQ (2021) Further characterization of glycoform-selective prions of variably protease-sensitive prionopathy. Pathogens 10. https://doi.org/10.3390/pathogens10050513

  44. Zou WQ, Langeveld J, Xiao X, Chen S, McGeer PL, Yuan J et al (2010) PrP conformational transitions alter species preference of a PrP-specific antibody. J Biol Chem 285:13874–13884. https://doi.org/10.1074/jbc.M109.088831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zou WQ, Puoti G, Xiao X, Yuan J, Qing L, Cali I et al (2010) Variably protease-sensitive prionopathy: a new sporadic disease of the prion protein. Ann Neurol 68:162–172. https://doi.org/10.1002/ana.22094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all donors and their families for their tissue and CSF donations, and the physicians for their support.

Funding

This study was supported by the CJD Foundation, National Institutes of Health (NIH) NS109532, NS096626, the BAND grant jointly funded by the Alzheimer’s Association, Alzheimer’s Research UK, Michael J. Fox Foundation for Parkinson’s Research, and Weston Brain Institute, and USDA to W.Q.Z., NS112010 to W.Q.Z., Z.W., and S.G.C., NS118760 to S.G.C. and the Intramural Research Program of the NIAID, NIH and gifts from Mary Hilderman Smith, Zoë Smith Jaye, and Jenny Smith Unruh in memory of Jeffrey Smith to B.C., as well as CDC grant to B.S.A.

Author information

Authors and Affiliations

Authors

Contributions

W.Q.Z. conceived and designed the study. W.Z., C.D.O., A.F., J.Y., M.D., B.C., and W.Q.Z. developed, performed, and interpreted RT-QuIC analysis of the skin samples. J.Y., S.Z.A.S., and W.Q.Z developed, performed, and interpreted the western blotting analyses of RT-QuIC end products of the skin samples. J.Z. and C.T. did McNemar’s tests for data comparisons. S.G.C. provided skin autopsy samples and demographic data of part of non-CJD cases originated from outside of NPDPSC. K.K. and B.S.A. provided clinical data and CSF RT-QuIC results. B.X. provided recombinant protein controls. W.Z., C.D.O., A.F., M.D., Z.W., B.C., and W.Q.Z. wrote the first version of the paper. All authors critically reviewed, revised, and approved the final version of the manuscript.

Corresponding authors

Correspondence to Byron Caughey or Wen-Quan Zou.

Ethics declarations

Competing interest disclosure

BC has US Patent 8,216,788 and European Patent EP 2554996 pertaining to RT-QuIC testing. All other authors declare that they have no competing interests.

Role of the funder/sponsor

The sponsors provided financial support for the research but were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Orrú, C.D., Foutz, A. et al. Large-scale validation of skin prion seeding activity as a biomarker for diagnosis of prion diseases. Acta Neuropathol 147, 17 (2024). https://doi.org/10.1007/s00401-023-02661-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00401-023-02661-2

Keywords

Navigation