Skip to main content

Advertisement

Log in

CNS macrophages and peripheral myeloid cells in brain tumours

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Primary brain tumours (gliomas) initiate a strong host response and can contain large amounts of immune cells (myeloid cells) such as microglia and tumour-infiltrating macrophages. In gliomas the course of pathology is not only controlled by the genetic make-up of the tumour cells, but also depends on the interplay with myeloid cells in the tumour microenvironment. Especially malignant gliomas such as glioblastoma multiforme (GBM) are notoriously immune-suppressive and it is now evident that GBM cells manipulate myeloid cells to support tumour expansion. The protumorigenic effects of glioma-associated myeloid cells comprise a support for angiogenesis as well as tumour cell invasion, proliferation and survival. Different strategies for inhibiting the pathological functions of myeloid cells in gliomas are explored, and blocking the tropism of microglia/macrophages to gliomas or manipulating the signal transduction pathways for immune cell activation has been successful in pre-clinical models. Hence, myeloid cells are now emerging as a promising target for new adjuvant therapies for gliomas. However, it is also becoming evident that some myeloid-directed glioma therapies may only be beneficial for distinct subclasses of gliomas and that a more cell-type-specific manipulation of either microglia or macrophages may improve therapeutic outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. abd-el-Basset E, Fedoroff S (1995) Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J Neurosci Res 41(2):222–237. doi:10.1002/jnr.490410210

    CAS  PubMed  Google Scholar 

  2. Adach A, Ellert-Miklaszewska A, Kaminska B (2009) Molecular characterization of STAT signaling in inflammation and tumorigenesis. Methods Mol Biol 512:265–278. doi:10.1007/978-1-60327-530-9_14

    CAS  PubMed  Google Scholar 

  3. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi:10.1038/nn2014

    CAS  PubMed  Google Scholar 

  4. Badhiwala J, Decker WK, Berens ME, Bhardwaj RD (2013) Clinical trials in cellular immunotherapy for brain/CNS tumors. Expert Rev Neurother 13(4):405–424. doi:10.1586/ern.13.23

    CAS  PubMed  Google Scholar 

  5. Badie B, Schartner J (2001) Role of microglia in glioma biology. Microsc Res Tech 54(2):106–113

    CAS  PubMed  Google Scholar 

  6. Badie B, Schartner J, Klaver J, Vorpahl J (1999) In vitro modulation of microglia motility by glioma cells is mediated by hepatocyte growth factor/scatter factor. Neurosurgery 44 (5):1077–1082 (discussion 1082–1073)

    Google Scholar 

  7. Badie B, Schartner JM (2000) Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery 46(4):957–961 (discussion 961–952)

    Google Scholar 

  8. Badie B, Schartner JM, Paul J, Bartley BA, Vorpahl J, Preston JK (2000) Dexamethasone-induced abolition of the inflammatory response in an experimental glioma model: a flow cytometry study. J Neurosurg 93(4):634–639. doi:10.3171/jns.2000.93.4.0634

    CAS  PubMed  Google Scholar 

  9. Beers DR, Henkel JS, Xiao Q, Zhao W, Wang J, Yen AA, Siklos L, McKercher SR, Appel SH (2006) Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 103(43):16021–16026. doi:10.1073/pnas.0607423103

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Bello L, Lucini V, Carrabba G, Giussani C, Machluf M, Pluderi M, Nikas D, Zhang J, Tomei G, Villani RM, Carroll RS, Bikfalvi A, Black PM (2001) Simultaneous inhibition of glioma angiogenesis, cell proliferation, and invasion by a naturally occurring fragment of human metalloproteinase-2. Cancer Res 61(24):8730–8736

    CAS  PubMed  Google Scholar 

  11. Bettinger I, Thanos S, Paulus W (2002) Microglia promote glioma migration. Acta Neuropathol (Berl) 103(4):351–355

    Google Scholar 

  12. Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WF, Boddeke HW, Phillips HS, Nakano I, Lang FF, Colman H, Sulman EP, Aldape K (2013) Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 24(3):331–346. doi:10.1016/j.ccr.2013.08.001

    CAS  PubMed  Google Scholar 

  13. Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F, James JD, Gumin J, Diefes KL, Kim SH, Turski A, Azodi Y, Yang Y, Doucette T, Colman H, Sulman EP, Lang FF, Rao G, Copray S, Vaillant BD, Aldape KD (2011) The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev 25(24):2594–2609. doi:10.1101/gad.176800.111

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bielamowicz K, Khawja S, Ahmed N (2013) Adoptive cell therapies for glioblastoma. Front Oncol 3:275. doi:10.3389/fonc.2013.00275

    PubMed Central  PubMed  Google Scholar 

  15. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57(13):2602–2605

    CAS  PubMed  Google Scholar 

  16. Boche D, Perry VH, Nicoll JA (2013) Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 39(1):3–18. doi:10.1111/nan.12011

    CAS  PubMed  Google Scholar 

  17. Bradley D, Rees J (2013) Updates in the management of high-grade glioma. J Neurol. doi:10.1007/s00415-013-7032-x

    PubMed  Google Scholar 

  18. Brantley EC, Benveniste EN (2008) Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res MCR 6(5):675–684. doi:10.1158/1541-7786.MCR-07-2180

    CAS  Google Scholar 

  19. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L, Network TR (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477. doi:10.1016/j.cell.2013.09.034

    CAS  PubMed  Google Scholar 

  20. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143. doi:10.1038/nn.3599

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, Lasorella A, Aldape K, Califano A, Iavarone A (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463(7279):318–325. doi:10.1038/nature08712

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Casazza A, Laoui D, Wenes M, Rizzolio S, Bassani N, Mambretti M, Deschoemaeker S, Van Ginderachter JA, Tamagnone L, Mazzone M (2013) Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity. Cancer Cell 24(6):695–709. doi:10.1016/j.ccr.2013.11.007

    CAS  PubMed  Google Scholar 

  23. Chen J, McKay RM, Parada LF (2012) Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell 149(1):36–47. doi:10.1016/j.cell.2012.03.009

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ciechomska IA, Gabrusiewicz K, Szczepankiewicz AA, Kaminska B (2013) Endoplasmic reticulum stress triggers autophagy in malignant glioma cells undergoing cyclosporine a-induced cell death. Oncogene 32(12):1518–1529. doi:10.1038/onc.2012.174

    CAS  PubMed  Google Scholar 

  25. Compton JJ, Laack NN, Eckel LJ, Schomas DA, Giannini C, Meyer FB (2012) Long-term outcomes for low-grade intracranial ganglioglioma: 30-year experience from the Mayo Clinic. J Neurosurg 117(5):825–830. doi:10.3171/2012.7.JNS111260

    PubMed  Google Scholar 

  26. Coniglio SJ, Eugenin E, Dobrenis K, Stanley ER, West BL, Symons MH, Segall JE (2012) Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Mol Med 18:519–527. doi:10.2119/molmed.2011.00217

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Cooper LA, Gutman DA, Chisolm C, Appin C, Kong J, Rong Y, Kurc T, Van Meir EG, Saltz JH, Moreno CS, Brat DJ (2012) The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Pathol 180(5):2108–2119. doi:10.1016/j.ajpath.2012.01.040

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Csoka B, Selmeczy Z, Koscso B, Nemeth ZH, Pacher P, Murray PJ, Kepka-Lenhart D, Morris SM Jr, Gause WC, Leibovich SJ, Hasko G (2012) Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J Off Publ Federation Am Soc Exp Biol 26(1):376–386. doi:10.1096/fj.11-190934

    CAS  Google Scholar 

  29. Cunningham CL, Martinez-Cerdeno V, Noctor SC (2013) Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci Off J Soc Neurosci 33(10):4216–4233. doi:10.1523/JNEUROSCI.3441-12.2013

    CAS  Google Scholar 

  30. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi:10.1038/nn1472

    CAS  PubMed  Google Scholar 

  31. del Río-Hortega P (1921) Sobre la fagocitosis en los tumores y en otros procesos patológicos. In: Río-Hortega Pd (ed) Archivos de Cardiología y Hematología, vol 2, pp 161–220

  32. Diserbo M, Agin A, Lamproglou I, Mauris J, Staali F, Multon E, Amourette C (2002) Blood-brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can J Physiol Pharmacol 80(7):670–678

    CAS  PubMed  Google Scholar 

  33. Dityatev A, Seidenbecher CI, Schachner M (2010) Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 33(11):503–512. doi:10.1016/j.tins.2010.08.003

    CAS  PubMed  Google Scholar 

  34. Doucette T, Rao G, Rao A, Shen L, Aldape K, Wei J, Dziurzynski K, Gilbert M, Heimberger AB (2013) Immune heterogeneity of glioblastoma subtypes: extrapolation from the cancer genome atlas. Cancer Immunol Res 1(112). doi:10.1158/2326-6066.CIR-13-0028

  35. Ebert S, Gerber J, Bader S, Muhlhauser F, Brechtel K, Mitchell TJ, Nau R (2005) Dose-dependent activation of microglial cells by Toll-like receptor agonists alone and in combination. J Neuroimmunol 159(1–2):87–96. doi:10.1016/j.jneuroim.2004.10.005

    CAS  PubMed  Google Scholar 

  36. El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54(6):526–535. doi:10.1002/glia.20401

    PubMed  Google Scholar 

  37. Ellert-Miklaszewska A, Dabrowski M, Lipko M, Sliwa M, Maleszewska M, Kaminska B (2013) Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia 61(7):1178–1190. doi:10.1002/glia.22510

    PubMed  Google Scholar 

  38. Engler JR, Robinson AE, Smirnov I, Hodgson JG, Berger MS, Gupta N, James CD, Molinaro A, Phillips JJ (2012) Increased microglia/macrophage gene expression in a subset of adult and pediatric astrocytomas. PLoS ONE 7(8):e43339. doi:10.1371/journal.pone.0043339

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Flugel A, Labeur MS, Grasbon-Frodl EM, Kreutzberg GW, Graeber MB (1999) Microglia only weakly present glioma antigen to cytotoxic T cells. Int J Dev Neurosci Off J Int Soc Dev Neurosci 17(5–6):547–556

    CAS  Google Scholar 

  40. Ford AL, Foulcher E, Lemckert FA, Sedgwick JD (1996) Microglia induce CD4 T lymphocyte final effector function and death. J Exp Med 184(5):1737–1745

    CAS  PubMed  Google Scholar 

  41. Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic Signal 8(3):629–657. doi:10.1007/s11302-012-9300-0

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM (2012) Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 338(6110):1080–1084. doi:10.1126/science.1226929

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Gabrusiewicz K, Ellert-Miklaszewska A, Lipko M, Sielska M, Frankowska M, Kaminska B (2011) Characteristics of the alternative phenotype of microglia/macrophages and its modulation in experimental gliomas. PLoS ONE 6(8):e23902. doi:10.1371/journal.pone.0023902

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Galarneau H, Villeneuve J, Gowing G, Julien JP, Vallieres L (2007) Increased glioma growth in mice depleted of macrophages. Cancer Res 67(18):8874–8881. doi:10.1158/0008-5472.CAN-07-0177

    CAS  PubMed  Google Scholar 

  45. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S, Brendecke SM, Kierdorf K, Staszewski O, Datta M, Luedde T, Heikenwalder M, Jung S, Prinz M (2013) A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 16(11):1618–1626. doi:10.1038/nn.3531

    CAS  PubMed  Google Scholar 

  47. Gomez Perdiguero E, Schulz C, Geissmann F (2013) Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia 61(1):112–120. doi:10.1002/glia.22393

    PubMed  Google Scholar 

  48. Graeber MB, Scheithauer BW, Kreutzberg GW (2002) Microglia in brain tumors. Glia 40(2):252–259

    PubMed  Google Scholar 

  49. Grauer OM, Molling JW, Bennink E, Toonen LW, Sutmuller RP, Nierkens S, Adema GJ (2008) TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol 181(10):6720–6729

    CAS  PubMed  Google Scholar 

  50. Hanisch UK (2013) Proteins in microglial activation–inputs and outputs by subsets. Curr Protein Pept Sci 14(1):3–15

    CAS  PubMed  Google Scholar 

  51. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:10.1038/nn1997

    CAS  PubMed  Google Scholar 

  52. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci USA 95(18):10896–10901

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Hart AD, Wyttenbach A, Perry VH, Teeling JL (2012) Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 26(5):754–765. doi:10.1016/j.bbi.2011.11.006

    PubMed Central  PubMed  Google Scholar 

  54. Hasko G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25(1):33–39

    CAS  PubMed  Google Scholar 

  55. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. New Engl J Med 352(10):997–1003. doi:10.1056/NEJMoa043331

    CAS  PubMed  Google Scholar 

  56. Heimberger AB, Sampson JH (2011) Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro Oncol 13(1):3–13. doi:10.1093/neuonc/noq169

    PubMed Central  PubMed  Google Scholar 

  57. Held-Feindt J, Hattermann K, Muerkoster SS, Wedderkopp H, Knerlich-Lukoschus F, Ungefroren H, Mehdorn HM, Mentlein R (2010) CX3CR1 promotes recruitment of human glioma-infiltrating microglia/macrophages (GIMs). Exp Cell Res 316(9):1553–1566. doi:10.1016/j.yexcr.2010.02.018

    CAS  PubMed  Google Scholar 

  58. Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31. doi:10.3389/neuro.09.031.2009

    PubMed Central  PubMed  Google Scholar 

  59. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J (2013) The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16(12):1896–1905. doi:10.1038/nn.3554

    CAS  PubMed  Google Scholar 

  60. Hussain SF, Kong LY, Jordan J, Conrad C, Madden T, Fokt I, Priebe W, Heimberger AB (2007) A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 67(20):9630–9636. doi:10.1158/0008-5472.CAN-07-1243

    CAS  PubMed  Google Scholar 

  61. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB (2006) The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 8(3):261–279. doi:10.1215/15228517-2006-008

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Ishihara H, Kubota H, Lindberg RL, Leppert D, Gloor SM, Errede M, Virgintino D, Fontana A, Yonekawa Y, Frei K (2008) Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol 67(5):435–448. doi:10.1097/NEN.0b013e31816fd622

    CAS  PubMed  Google Scholar 

  63. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175(7):4320–4330

    CAS  PubMed  Google Scholar 

  64. Jacobs VL, Landry RP, Liu Y, Romero-Sandoval EA, De Leo JA (2012) Propentofylline decreases tumor growth in a rodent model of glioblastoma multiforme by a direct mechanism on microglia. Neuro Oncol 14(2):119–131. doi:10.1093/neuonc/nor194

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Janicki CN, Jenkinson SR, Williams NA, Morgan DJ (2008) Loss of CTL function among high-avidity tumor-specific CD8 + T cells following tumor infiltration. Cancer Res 68(8):2993–3000. doi:10.1158/0008-5472.CAN-07-5008

    CAS  PubMed  Google Scholar 

  66. Jansen T, Tyler B, Mankowski JL, Recinos VR, Pradilla G, Legnani F, Laterra J, Olivi A (2010) FasL gene knock-down therapy enhances the antiglioma immune response. Neuro Oncol 12(5):482–489. doi:10.1093/neuonc/nop052

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Jantaratnotai N, Choi HB, McLarnon JG (2009) ATP stimulates chemokine production via a store-operated calcium entry pathway in C6 glioma cells. BMC Cancer 9:442. doi:10.1186/1471-2407-9-442

    PubMed Central  PubMed  Google Scholar 

  68. Joseph J, Knobler RL, D’Imperio C, Lublin FD (1988) Down-regulation of interferon-gamma-induced class II expression on human glioma cells by recombinant interferon-beta: effects of dosage treatment schedule. J Neuroimmunol 20(1):39–44

    CAS  PubMed  Google Scholar 

  69. Kaminska B, Kocyk M, Kijewska M (2013) TGF beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol 986:171–187. doi:10.1007/978-94-007-4719-7_9

    CAS  PubMed  Google Scholar 

  70. Kaneko YS, Ota A, Nakashima A, Mori K, Nagatsu I, Nagatsu T (2012) Regulation of oxidative stress in long-lived lipopolysaccharide-activated microglia. Clin Exp Pharmacol Physiol 39(7):599–607. doi:10.1111/j.1440-1681.2012.05716.x

    CAS  PubMed  Google Scholar 

  71. Kees T, Lohr J, Noack J, Mora R, Gdynia G, Todt G, Ernst A, Radlwimmer B, Falk CS, Herold-Mende C, Regnier-Vigouroux A (2012) Microglia isolated from patients with glioma gain antitumor activities on poly (I:C) stimulation. Neuro Oncol 14(1):64–78. doi:10.1093/neuonc/nor182

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. doi:10.1152/physrev.00011.2010

    CAS  PubMed  Google Scholar 

  73. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18. doi:10.1016/j.neuron.2012.12.023

    CAS  PubMed  Google Scholar 

  74. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi:10.1038/nn.3318

    CAS  PubMed  Google Scholar 

  75. Kim J, Hajjar KA (2002) Annexin II: a plasminogen–plasminogen activator co-receptor. Front Biosci J Virtual Libr 7:d341–d348

    CAS  Google Scholar 

  76. Kleihues PB, Burger PC, Scheithauer BW (1996) Histological typing of the tumours of the central nervous system. International histological classification of tumours, 2nd edn. Springer, Stuttgart

  77. Kloss CU, Bohatschek M, Kreutzberg GW, Raivich G (2001) Effect of lipopolysaccharide on the morphology and integrin immunoreactivity of ramified microglia in the mouse brain and in cell culture. Exp Neurol 168(1):32–46. doi:10.1006/exnr.2000.7575

    CAS  PubMed  Google Scholar 

  78. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N, Kadomatsu K (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4:e525. doi:10.1038/cddis.2013.54

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216(1):15–24. doi:10.1002/path.2370

    CAS  PubMed  Google Scholar 

  80. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, Niu G, Kay H, Mule J, Kerr WG, Jove R, Pardoll D, Yu H (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11(12):1314–1321. doi:10.1038/nm1325

    CAS  PubMed  Google Scholar 

  81. Ku MC, Wolf SA, Respondek D, Matyash V, Pohlmann A, Waiczies S, Waiczies H, Niendorf T, Synowitz M, Glass R, Kettenmann H (2013) GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathol 125(4):609–620. doi:10.1007/s00401-013-1079-8

    CAS  PubMed  Google Scholar 

  82. Kurpad SN, Wikstrand CJ, Bigner DD (1994) Immunobiology of malignant astrocytomas. Semin Oncol 21(2):149–161

    CAS  PubMed  Google Scholar 

  83. Lakka SS, Gondi CS, Rao JS (2005) Proteases and glioma angiogenesis. Brain Pathol 15(4):327–341

    CAS  PubMed  Google Scholar 

  84. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170

    CAS  PubMed  Google Scholar 

  85. Li B, Senbabaoglu Y, Peng W, Yang ML, Xu J, Li JZ (2012) Genomic estimates of aneuploid content in glioblastoma multiforme and improved classification. Clinical Cancer Res Off J Am Assoc Cancer Res 18(20):5595–5605. doi:10.1158/1078-0432.CCR-12-1427

    CAS  Google Scholar 

  86. Linden J (2006) Adenosine metabolism and cancer. Focus on “Adenosine downregulates DPPIV on HT-29 colon cancer cells by stimulating protein tyrosine phosphatases and reducing ERK1/2 activity via a novel pathway”. Am J Physiol Cell Physiol 291(3):C405–C406. doi:10.1152/ajpcell.00242.2006

    CAS  PubMed  Google Scholar 

  87. Liu C, Luo D, Streit WJ, Harrison JK (2008) CX3CL1 and CX3CR1 in the GL261 murine model of glioma: CX3CR1 deficiency does not impact tumor growth or infiltration of microglia and lymphocytes. J Neuroimmunol 198(1–2):98–105. doi:10.1016/j.jneuroim.2008.04.016

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109. doi:10.1007/s00401-007-0243-4

    PubMed Central  PubMed  Google Scholar 

  89. Luongo L, Guida F, Imperatore R, Napolitano F, Gatta L, Cristino L, Giordano C, Siniscalco D, Di Marzo V, Bellini G, Petrelli R, Cappellacci L, Usiello A, de Novellis V, Rossi F, Maione S (2014) The A1 adenosine receptor as a new player in microglia physiology. Glia 62(1):122–132. doi:10.1002/glia.22592

    CAS  PubMed  Google Scholar 

  90. Machein MR, Renninger S, de Lima-Hahn E, Plate KH (2003) Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol 13(4):582–597

    CAS  PubMed  Google Scholar 

  91. Mark R. Gilbert JD, Minhee Won, Deborah T. Blumenthal, Michael A. Vogelbaum, Kenneth D. Aldape, Howard Colman, Arnab Chakravarti, Robert Jeraj, Terri S. Armstrong, Jeffrey Scott Wefel, Paul D. Brown, Kurt A. Jaeckle, David Schiff, James Norman Atkins, David Brachman, Maria Werner-Wasik, Ritsuko Komaki, Erik P. Sulman, Minesh P. Mehta; University of Texas MD Anderson Cancer Center Department of Neuro-Oncology, Houston, TX; Radiation Therapy Oncology Group, Philadelphia, PA; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Cleveland Clinic Foundation, Cleveland, OH; The University of Texas MD Anderson Cancer Center, Houston, TX; University of Utah, Huntsman Cancer Institute, Salt Lake City, UT; Arthur G. James Cancer Center, The Ohio State University, Columbus, OH; Department of Medical Physics, University of Wisconsin, Madison, WI; University of Texas Health Science Center School of Nursing, Houston, TX; Mayo Clinic, Jacksonville, FL; University of Virginia Medical Center, Charlottesville, VA; National Surgical Adjuvant Breast and Bowel Project and SCCC-CCOP, Goldboro, NC; Arizona Oncology Services Foundation, Phoenix, AZ; Thomas Jefferson University Hospital, Philadelphia, PA; University of Maryland, Baltimore, MD (2013) RTOG 0825: Phase III double-blind, placebo-controlled trial evaluating bevacizumab in patiens with newly diagnosed glioblastoma. Paper presented at the ASCO Annual Meeting

  92. Markovic DS, Glass R, Synowitz M, Rooijen N, Kettenmann H (2005) Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol 64(9):754–762

    CAS  PubMed  Google Scholar 

  93. Markovic DS, Vinnakota K, Chirasani S, Synowitz M, Raguet H, Stock K, Sliwa M, Lehmann S, Kalin R, van Rooijen N, Holmbeck K, Heppner FL, Kiwit J, Matyash V, Lehnardt S, Kaminska B, Glass R, Kettenmann H (2009) Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci USA 106(30):12530–12535. doi:10.1073/pnas.0804273106

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Markovic DS, Vinnakota K, van Rooijen N, Kiwit J, Synowitz M, Glass R, Kettenmann H (2011) Minocycline reduces glioma expansion and invasion by attenuating microglial MT1-MMP expression. Brain Behav Immun 25(4):624–628. doi:10.1016/j.bbi.2011.01.015

    CAS  PubMed  Google Scholar 

  95. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553. doi:10.1038/nn2015

    CAS  PubMed  Google Scholar 

  96. Morioka T, Baba T, Black KL, Streit WJ (1992) Response of microglial cells to experimental rat glioma. Glia 6(1):75–79. doi:10.1002/glia.440060110

    CAS  PubMed  Google Scholar 

  97. Mosieniak G, Figiel I, Kaminska B (1997) Cyclosporin A, an immunosuppressive drug, induces programmed cell death in rat C6 glioma cells by a mechanism that involves the AP-1 transcription factor. J Neurochem 68(3):1142–1149

    CAS  PubMed  Google Scholar 

  98. Naganuma H, Sasaki A, Satoh E, Nagasaka M, Nakano S, Isoe S, Nukui H (1998) Down-regulation of transforming growth factor-beta and interleukin-10 secretion from malignant glioma cells by cytokines and anticancer drugs. J Neurooncol 39(3):227–236

    CAS  PubMed  Google Scholar 

  99. Nakano Y, Kuroda E, Kito T, Uematsu S, Akira S, Yokota A, Nishizawa S, Yamashita U (2008) Induction of prostaglandin E2 synthesis and microsomal prostaglandin E synthase-1 expression in murine microglia by glioma-derived soluble factors. Laboratory investigation. J Neurosurg 108(2):311–319. doi:10.3171/JNS/2008/108/2/0311

    CAS  PubMed  Google Scholar 

  100. Nieto MA (2011) The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 27:347–376. doi:10.1146/annurev-cellbio-092910-154036

    CAS  PubMed  Google Scholar 

  101. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647

    CAS  PubMed  Google Scholar 

  102. Nishie A, Ono M, Shono T, Fukushi J, Otsubo M, Onoue H, Ito Y, Inamura T, Ikezaki K, Fukui M, Iwaki T, Kuwano M (1999) Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res Off J Am Assoc Cancer Res 5(5):1107–1113

    CAS  Google Scholar 

  103. Norden AD, Drappatz J, Wen PY (2009) Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol 5(11):610–620. doi:10.1038/nrneurol.2009.159

    CAS  PubMed  Google Scholar 

  104. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Ohnishi T, Matsumura H, Izumoto S, Hiraga S, Hayakawa T (1998) A novel model of glioma cell invasion using organotypic brain slice culture. Cancer Res 58(14):2935–2940

    CAS  PubMed  Google Scholar 

  106. Okada M, Saio M, Kito Y, Ohe N, Yano H, Yoshimura S, Iwama T, Takami T (2009) Tumor-associated macrophage/microglia infiltration in human gliomas is correlated with MCP-3, but not MCP-1. Int J Oncol 34(6):1621–1627

    CAS  PubMed  Google Scholar 

  107. Omuro A, DeAngelis LM (2013) Glioblastoma and other malignant gliomas: a clinical review. JAMA J Am Med Assoc 310(17):1842–1850. doi:10.1001/jama.2013.280319

    CAS  Google Scholar 

  108. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, Stroup NE, Kruchko C, Barnholtz-Sloan JS (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol 15(Suppl 2):ii1–ii56. doi:10.1093/neuonc/not151

    Google Scholar 

  109. Pagano M, Reboud-Ravaux M (2011) Cryptic activities of fibronectin fragments, particularly cryptic proteases. Front Biosci (Landmark Ed) 16:698–706

    CAS  Google Scholar 

  110. Paolicelli RC, Gross CT (2011) Microglia in development: linking brain wiring to brain environment. Neuron Glia Biol 7(1):77–83. doi:10.1017/S1740925X12000105

    PubMed  Google Scholar 

  111. Parney IF, Waldron JS, Parsa AT (2009) Flow cytometry and in vitro analysis of human glioma-associated macrophages. Laboratory investigation. J Neurosurg 110(3):572–582. doi:10.3171/2008.7.JNS08475

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Penfield W (1925) Microglia and the process of phagocytosis in gliomas. Am J Pathol 1(1):77–90

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, Garcia-Dorado D, Poca MA, Sahuquillo J, Baselga J, Seoane J (2009) TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15(4):315–327. doi:10.1016/j.ccr.2009.02.011

    CAS  PubMed  Google Scholar 

  114. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173

    CAS  PubMed  Google Scholar 

  115. Piao Y, Liang J, Holmes L, Henry V, Sulman E, de Groot JF (2013) Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin Cancer Res Off J Am Assoc Cancer Res 19(16):4392–4403. doi:10.1158/1078-0432.CCR-12-1557

    CAS  Google Scholar 

  116. Piao Y, Liang J, Holmes L, Zurita AJ, Henry V, Heymach JV, de Groot JF (2012) Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro Oncol 14(11):1379–1392. doi:10.1093/neuonc/nos158

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Platten M, Kretz A, Naumann U, Aulwurm S, Egashira K, Isenmann S, Weller M (2003) Monocyte chemoattractant protein-1 increases microglial infiltration and aggressiveness of gliomas. Ann Neurol 54(3):388–392

    CAS  PubMed  Google Scholar 

  118. Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass K, Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7(12):1356–1361. doi:10.1038/nm1201-1356

    CAS  PubMed  Google Scholar 

  119. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, Olson OC, Quick ML, Huse JT, Teijeiro V, Setty M, Leslie CS, Oei Y, Pedraza A, Zhang J, Brennan CW, Sutton JC, Holland EC, Daniel D, Joyce JA (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272. doi:10.1038/nm.3337

    CAS  PubMed  Google Scholar 

  120. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. doi:10.1016/j.cell.2010.03.014

    CAS  PubMed  Google Scholar 

  121. Qin H, Yeh WI, De Sarno P, Holdbrooks AT, Liu Y, Muldowney MT, Reynolds SL, Yanagisawa LL, Fox TH 3rd, Park K, Harrington LE, Raman C, Benveniste EN (2012) Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc Natl Acad Sci USA 109(13):5004–5009. doi:10.1073/pnas.1117218109

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Raivich G (2005) Like cops on the beat: the active role of resting microglia. Trends Neurosci 28(11):571–573. doi:10.1016/j.tins.2005.09.001

    CAS  PubMed  Google Scholar 

  123. Ramanathan M, Pinhal-Enfield G, Hao I, Leibovich SJ (2007) Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Mol Biol Cell 18(1):14–23. doi:10.1091/mbc.E06-07-0596

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9):623–635. doi:10.1038/nri3265

    CAS  PubMed  Google Scholar 

  125. Ribes S, Adam N, Schutze S, Regen T, Redlich S, Janova H, Borisch A, Hanisch UK, Nau R (2012) The nucleotide-binding oligomerization domain-containing-2 ligand muramyl dipeptide enhances phagocytosis and intracellular killing of Escherichia coli K1 by Toll-like receptor agonists in microglial cells. J Neuroimmunol 252(1–2):16–23. doi:10.1016/j.jneuroim.2012.07.012

    CAS  PubMed  Google Scholar 

  126. Roggendorf W, Strupp S, Paulus W (1996) Distribution and characterization of microglia/macrophages in human brain tumors. Acta Neuropathol (Berl) 92(3):288–293

    CAS  Google Scholar 

  127. Rolle CE, Sengupta S, Lesniak MS (2012) Mechanisms of immune evasion by gliomas. Adv Exp Med Biol 746:53–76. doi:10.1007/978-1-4614-3146-6_5

    CAS  PubMed  Google Scholar 

  128. Rutka JT, Apodaca G, Stern R, Rosenblum M (1988) The extracellular matrix of the central and peripheral nervous systems: structure and function. J Neurosurg 69(2):155–170. doi:10.3171/jns.1988.69.2.0155

    CAS  PubMed  Google Scholar 

  129. Sahm F, Oezen I, Opitz CA, Radlwimmer B, von Deimling A, Ahrendt T, Adams S, Bode HB, Guillemin GJ, Wick W, Platten M (2013) The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res 73(11):3225–3234. doi:10.1158/0008-5472.CAN-12-3831

    CAS  PubMed  Google Scholar 

  130. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11(11):775–787. doi:10.1038/nri3086

    CAS  PubMed  Google Scholar 

  131. Sanai N, Berger MS (2012) Recent surgical management of gliomas. Adv Exp Med Biol 746:12–25. doi:10.1007/978-1-4614-3146-6_2

    PubMed  Google Scholar 

  132. Sarkar S, Doring A, Zemp FJ, Silva C, Lun X, Wang X, Kelly J, Hader W, Hamilton M, Mercier P, Dunn JF, Kinniburgh D, van Rooijen N, Robbins S, Forsyth P, Cairncross G, Weiss S, Yong VW (2014) Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells. Nat Neurosci 17(1):46–55. doi:10.1038/nn.3597

    CAS  PubMed  Google Scholar 

  133. Schartner JM, Hagar AR, Van Handel M, Zhang L, Nadkarni N, Badie B (2005) Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 51(4):279–285. doi:10.1002/glia.20201

    PubMed  Google Scholar 

  134. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi:10.1126/science.1219179

    CAS  PubMed  Google Scholar 

  135. Schwaighofer H, Kernan NA, O’Reilly RJ, Brankova J, Nachbaur D, Herold M, Eibl B, Niederwieser D (1996) Serum levels of cytokines and secondary messages after T-cell-depleted and non-T-cell-depleted bone marrow transplantation: influence of conditioning and hematopoietic reconstitution. Transplantation 62(7):947–953

    CAS  PubMed  Google Scholar 

  136. Seiki M (2003) Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 194(1):1–11. S0304383502006997 [pii]

    Google Scholar 

  137. Sengupta S, Marrinan J, Frishman C, Sampath P (2012) Impact of temozolomide on immune response during malignant glioma chemotherapy. Clin Dev Immunol 2012:831090. doi:10.1155/2012/831090

    PubMed Central  PubMed  Google Scholar 

  138. Shechter R, Schwartz M (2013) Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how’. J Pathol 229(2):332–346. doi:10.1002/path.4106

    CAS  PubMed  Google Scholar 

  139. Shinonaga M, Chang CC, Suzuki N, Sato M, Kuwabara T (1988) Immunohistological evaluation of macrophage infiltrates in brain tumors. Correlation with peritumoral edema. J Neurosurg 68(2):259–265. doi:10.3171/jns.1988.68.2.0259

    CAS  PubMed  Google Scholar 

  140. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727. doi:10.1016/j.ejca.2006.01.003

    CAS  PubMed  Google Scholar 

  141. Sielska M, Przanowski P, Wylot B, Gabrusiewicz K, Maleszewska M, Kijewska M, Zawadzka M, Kucharska J, Vinnakota K, Kettenmann H, Kotulska K, Grajkowska W, Kaminska B (2013) Distinct roles of CSF family cytokines in macrophage infiltration and activation in glioma progression and injury response. J Pathol 230(3):310–321. doi:10.1002/path.4192

    CAS  PubMed  Google Scholar 

  142. Sliwa M, Markovic D, Gabrusiewicz K, Synowitz M, Glass R, Zawadzka M, Wesolowska A, Kettenmann H, Kaminska B (2007) The invasion promoting effect of microglia on glioblastoma cells is inhibited by cyclosporin A. Brain J Neurol 130(Pt 2):476–489

    Google Scholar 

  143. Sonabend AM, Rolle CE, Lesniak MS (2008) The role of regulatory T cells in malignant glioma. Anticancer Res 28(2B):1143–1150

    PubMed  Google Scholar 

  144. Streit WJ (1994) Cellular immune response in brain tumors. Neuropathol Appl Neurobiol 20(2):205–206

    CAS  PubMed  Google Scholar 

  145. Suzumura A, Sawada M, Yamamoto H, Marunouchi T (1993) Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 151(4):2150–2158

    CAS  PubMed  Google Scholar 

  146. Synowitz M, Glass R, Farber K, Markovic D, Kronenberg G, Herrmann K, Schnermann J, Nolte C, van Rooijen N, Kiwit J, Kettenmann H (2006) A1 adenosine receptors in microglia control glioblastoma-host interaction. Cancer Res 66(17):8550–8557

    CAS  PubMed  Google Scholar 

  147. Tabatabai G, Bahr O, Mohle R, Eyupoglu IY, Boehmler AM, Wischhusen J, Rieger J, Blumcke I, Weller M, Wick W (2005) Lessons from the bone marrow: how malignant glioma cells attract adult haematopoietic progenitor cells. Brain J Neurol 128(Pt 9):2200–2211. doi:10.1093/brain/awh563

    Google Scholar 

  148. Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco CA, Murtomaki A, Aranda E, Miura N, Yla-Herttuala S, Fruttiger M, Makinen T, Eichmann A, Pollard JW, Gerhardt H, Alitalo K (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13(10):1202–1213. doi:10.1038/ncb2331

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Tatter SB (2002) Recurrent malignant glioma in adults. Curr Treat Options Oncol 3(6):509–524

    PubMed  Google Scholar 

  150. van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78(2):203–212. doi:10.1093/cvr/cvm102

    PubMed  Google Scholar 

  151. Veeravagu A, Jiang B, Ludwig C, Chang SD, Black KL, Patil CG (2013) Biopsy versus resection for the management of low-grade gliomas. Cochrane Database Systematic Rev 4:CD009319. doi:10.1002/14651858.CD009319.pub2

  152. Vega EA, Graner MW, Sampson JH (2008) Combating immunosuppression in glioma. Future Oncol 4(3):433–442. doi:10.2217/14796694.4.3.433

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110. doi:10.1016/j.ccr.2009.12.020

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Vince GH, Wagner S, Pietsch T, Klein R, Goldbrunner RH, Roosen K, Tonn JC (1999) Heterogeneous regional expression patterns of matrix metalloproteinases in human malignant gliomas. Int J Dev Neurosci Off J Int Soc Dev Neurosci 17(5–6):437–445

    CAS  Google Scholar 

  155. Vinnakota K, Hu F, Ku MC, Georgieva PB, Szulzewsky F, Pohlmann A, Waiczies S, Waiczies H, Niendorf T, Lehnardt S, Hanisch UK, Synowitz M, Markovic D, Wolf SA, Glass R, Kettenmann H (2013) Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro Oncol. doi:10.1093/neuonc/not115

    PubMed  Google Scholar 

  156. Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839. doi:10.1161/01.RES.0000070112.80711.3D

    CAS  PubMed  Google Scholar 

  157. Vukovic J, Colditz MJ, Blackmore DG, Ruitenberg MJ, Bartlett PF (2012) Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J Neurosci Off J Soc Neurosci 32(19):6435–6443. doi:10.1523/JNEUROSCI.5925-11.2012

    CAS  Google Scholar 

  158. Wagner S, Czub S, Greif M, Vince GH, Suss N, Kerkau S, Rieckmann P, Roggendorf W, Roosen K, Tonn JC (1999) Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer J 82(1):12–16

    CAS  Google Scholar 

  159. Wainwright DA, Dey M, Chang A, Lesniak MS (2013) Targeting tregs in malignant brain cancer: overcoming IDO. Front Immunol 4:116. doi:10.3389/fimmu.2013.00116

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Walker C, Baborie A, Crooks D, Wilkins S, Jenkinson MD (2011) Biology, genetics and imaging of glial cell tumours. Br J Radiol 84 Spec No 2:S90–S106. doi:10.1259/bjr/23430927

  161. Wang SC, Hong JH, Hsueh C, Chiang CS (2012) Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Investig J Tech Methods Pathol 92(1):151–162. doi:10.1038/labinvest.2011.128

    CAS  Google Scholar 

  162. Watters JJ, Schartner JM, Badie B (2005) Microglia function in brain tumors. J Neurosci Res 81(3):447–455

    CAS  PubMed  Google Scholar 

  163. Wei J, Gabrusiewicz K, Heimberger A (2013) The controversial role of microglia in malignant gliomas. Clin Dev Immunol 2013:285246. doi:10.1155/2013/285246

    PubMed Central  PubMed  Google Scholar 

  164. Wei J, Wang F, Kong LY, Xu S, Doucette T, Ferguson SD, Yang Y, McEnery K, Jethwa K, Gjyshi O, Qiao W, Levine NB, Lang FF, Rao G, Fuller GN, Calin GA, Heimberger AB (2013) miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res 73(13):3913–3926. doi:10.1158/0008-5472.CAN-12-4318

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Wesolowska A, Kwiatkowska A, Slomnicki L, Dembinski M, Master A, Sliwa M, Franciszkiewicz K, Chouaib S, Kaminska B (2008) Microglia-derived TGF-beta as an important regulator of glioblastoma invasion—an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Oncogene 27(7):918–930. doi:10.1038/sj.onc.1210683

    CAS  PubMed  Google Scholar 

  166. Wessels PH, Weber WE, Raven G, Ramaekers FC, Hopman AH, Twijnstra A (2003) Supratentorial grade II astrocytoma: biological features and clinical course. Lancet Neurol 2(7):395–403

    PubMed  Google Scholar 

  167. Wick W, Naumann U, Weller M (2006) Transforming growth factor-beta: a molecular target for the future therapy of glioblastoma. Curr Pharm Des 12(3):341–349

    CAS  PubMed  Google Scholar 

  168. Ye XZ, Xu SL, Xin YH, Yu SC, Ping YF, Chen L, Xiao HL, Wang B, Yi L, Wang QL, Jiang XF, Yang L, Zhang P, Qian C, Cui YH, Zhang X, Bian XW (2012) Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 189(1):444–453. doi:10.4049/jimmunol.1103248

    CAS  PubMed  Google Scholar 

  169. Yi L, Xiao H, Xu M, Ye X, Hu J, Li F, Li M, Luo C, Yu S, Bian X, Feng H (2011) Glioma-initiating cells: a predominant role in microglia/macrophages tropism to glioma. J Neuroimmunol 232(1–2):75–82. doi:10.1016/j.jneuroim.2010.10.011

    CAS  PubMed  Google Scholar 

  170. Yuan H, Gaber MW, McColgan T, Naimark MD, Kiani MF, Merchant TE (2003) Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies. Brain Res 969(1–2):59–69

    CAS  PubMed  Google Scholar 

  171. Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B (2009) Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia 57(13):1458–1467. doi:10.1002/glia.20863

    PubMed  Google Scholar 

  172. Zhang L, Handel MV, Schartner JM, Hagar A, Allen G, Curet M, Badie B (2007) Regulation of IL-10 expression by upstream stimulating factor (USF-1) in glioma-associated microglia. J Neuroimmunol 184(1–2):188–197. doi:10.1016/j.jneuroim.2006.12.006

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for R.G. by the Deutsche Forschungsgemeinschaft (SFB824, GL691/2), Anni-Hofmann Stiftung and the German Cancer Consortium (DKTK), Heidelberg, Germany, and for M.S. by the Deutsche Forschungsgemeinschaft (SY 144/3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Glass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glass, R., Synowitz, M. CNS macrophages and peripheral myeloid cells in brain tumours. Acta Neuropathol 128, 347–362 (2014). https://doi.org/10.1007/s00401-014-1274-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-014-1274-2

Keywords

Navigation