Skip to main content

Advertisement

Log in

Fingolimod attenuates ceramide-induced blood–brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes

Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Alterations in sphingolipid metabolism are described to contribute to various neurological disorders. We here determined the expression of enzymes involved in the sphingomyelin cycle and their products in postmortem brain tissue of multiple sclerosis (MS) patients. In parallel, we investigated the effect of the sphingosine-1 receptor agonist Fingolimod (Gilenya®) on sphingomyelin metabolism in reactive astrocytes and determined its functional consequences for the process of neuro-inflammation. Our results demonstrate that in active MS lesions, marked by large number of infiltrated immune cells, an altered expression of enzymes involved in the sphingomyelin cycle favors enhanced ceramide production. We identified reactive astrocytes as the primary cellular source of enhanced ceramide production in MS brain samples. Astrocytes isolated from MS lesions expressed enhanced mRNA levels of the ceramide-producing enzyme acid sphingomyelinase (ASM) compared to astrocytes isolated from control white matter. In addition, TNF-α treatment induced ASM mRNA and ceramide levels in astrocytes isolated from control white matter. Incubation of astrocytes with Fingolimod prior to TNF-α treatment reduced ceramide production and mRNA expression of ASM to control levels in astrocytes. Importantly, supernatants derived from reactive astrocytes treated with Fingolimod significantly reduced transendothelial monocyte migration. Overall, the present study demonstrates that reactive astrocytes represent a possible additional cellular target for Fingolimod in MS by directly reducing the production of pro-inflammatory lipids and limiting subsequent transendothelial leukocyte migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25

    Article  PubMed  CAS  Google Scholar 

  2. Berdyshev EV, Gorshkova I, Skobeleva A, Bittman R, Lu X, Dudek SM, Mirzapoiazova T, Garcia JG, Natarajan V (2009) FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells. J Biol Chem 284:5467–5477

    Article  PubMed  CAS  Google Scholar 

  3. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C (2009) Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–1054

    Article  PubMed  CAS  Google Scholar 

  4. Choi JW, Gardell SE, Herr DR, Rivera R, Lee CW, Noguchi K, Teo ST, Yung YC, Lu M, Kennedy G, Chun J (2011) FTY720 (Fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci USA 108:751–756

    Article  PubMed  CAS  Google Scholar 

  5. Cowart LA, Szulc Z, Bielawska A, Hannun YA (2002) Structural determinants of sphingolipid recognition by commercially available anti-ceramide antibodies. J Lipid Res 43:2042–2048

    Article  PubMed  CAS  Google Scholar 

  6. Cucullo L, Couraud PO, Weksler B, Romero IA, Hossain M, Rapp E, Janigro D (2007) Immortalized human brain endothelial cells and flow-based vascular modeling: a marriage of convenience for rational neurovascular studies. J Cereb Blood Flow Metab 28:312–328

    Article  PubMed  Google Scholar 

  7. Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA (2001) Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type i. Nat Genet 27:309–312

    Article  PubMed  CAS  Google Scholar 

  8. Dawson G, Qin J (2011) Gilenya (FTY720) inhibits acid sphingomyelinase by a mechanism similar to tricyclic antidepressants. Biochem Biophys Res Commun 404:321–323

    Article  PubMed  CAS  Google Scholar 

  9. De Groot CJ, Langeveld CH, Jongenelen CA, Montagne L, van der Valk P, Dijkstra CD (1997) Establishment of human adult astrocyte cultures derived from postmortem multiple sclerosis and control brain and spinal cord regions: immunophenotypical and functional characterization. J Neurosci Res 49:342–354

    Article  PubMed  Google Scholar 

  10. Didier N, Romero IA, Creminon C, Wijkhuisen A, Grassi J, Mabondzo A (2003) Secretion of interleukin-1beta by astrocytes mediates endothelin-1 and tumour necrosis factor-alpha effects on human brain microvascular endothelial cell permeability. J Neurochem 86:246–254

    Article  PubMed  CAS  Google Scholar 

  11. Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbins E (2001) Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis 6:431–439

    Article  PubMed  CAS  Google Scholar 

  12. Fiebich BL, Lieb K, Berger M, Bauer J (1995) Stimulation of the sphingomyelin pathway induces interleukin-6 gene expression in human astrocytoma cells. J Neuroimmunol 63:207–211

    Article  PubMed  CAS  Google Scholar 

  13. Forster C, Burek M, Romero IA, Weksler B, Couraud PO, Drenckhahn D (2008) Differential effects of hydrocortisone and TNF-alpha on tight junction proteins in an in vitro model of the human blood–brain barrier. J Physiol 586:1937–1949

    Article  PubMed  Google Scholar 

  14. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis—the plaque and its pathogenesis. N Engl J Med 354:942–955

    Article  PubMed  CAS  Google Scholar 

  15. Garcia-Vallejo JJ, van Dijk W, van het Hof B, van Die I, Engelse MA, Van Hinsbergh VW, Gringhuis SI (2006) Activation of human endothelial cells by tumor necrosis factor-alpha results in profound changes in the expression of glycosylation-related genes. J Cell Physiol 206:203–210

    Article  PubMed  CAS  Google Scholar 

  16. Gensure RH, Zeidel ML, Hill WG (2006) Lipid raft components cholesterol and sphingomyelin increase H+/OH− permeability of phosphatidylcholine membranes. Biochem J 398:485–495

    Article  PubMed  CAS  Google Scholar 

  17. Graler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine 1-phosphate G-protein-coupled receptors. FASEB J 18:551–553

    PubMed  CAS  Google Scholar 

  18. Grassme H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E (2003) Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9:322–330

    Article  PubMed  CAS  Google Scholar 

  19. Hauck CR, Grassme H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E (2000) Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 478:260–266

    Article  PubMed  CAS  Google Scholar 

  20. Hofmeister R, Wiegmann K, Korherr C, Bernardo K, Kronke M, Falk W (1997) Activation of acid sphingomyelinase by interleukin-1 (IL-1) requires the IL-1 receptor accessory protein. J Biol Chem 272:27730–27736

    Article  PubMed  CAS  Google Scholar 

  21. Jenkins RW, Canals D, Idkowiak-Baldys J, Simbari F, Roddy P, Perry DM, Kitatani K, Luberto C, Hannun YA (2010) Regulated secretion of acid sphingomyelinase. J Biol Chem 285:35706–35718

    Article  PubMed  CAS  Google Scholar 

  22. Kim S, Steelman AJ, Zhang Y, Kinney HC, Li J (2012) Aberrant upregulation of astroglial ceramide potentiates oligodendrocyte injury. Brain Pathol 22:41–57

    Article  PubMed  CAS  Google Scholar 

  23. Kooij G, Mizee MR, van Horssen J, Reijerkerk A, Witte ME, Drexhage JA, van der Pol SM, van Het HB, Scheffer G, Scheper R, Dijkstra CD, van der Valk P, De Vries HE (2011) Adenosine triphosphate-binding cassette transporters mediate chemokine (C–C motif) ligand 2 secretion from reactive astrocytes: relevance to multiple sclerosis pathogenesis. Brain 134:555–570

    Article  PubMed  Google Scholar 

  24. Lahiri S, Park H, Laviad EL, Lu X, Bittman R, Futerman AH (2009) Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an acyl-CoA chain length-dependent manner. J Biol Chem 284:16090–16098

    Article  PubMed  CAS  Google Scholar 

  25. Lande MB, Donovan JM, Zeidel ML (1995) The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J Gen Physiol 106:67–84

    Article  PubMed  CAS  Google Scholar 

  26. Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A, Koka S, Eisele K, Klarl BA, Rubben H, Schmid KW, Mann K, Hildenbrand S, Hefter H, Huber SM, Wieder T, Erhardt A, Haussinger D, Gulbins E, Lang F (2007) Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13:164–170

    Article  PubMed  CAS  Google Scholar 

  27. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL, Cyster JG (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360

    Article  PubMed  CAS  Google Scholar 

  28. Ogretmen B, Pettus BJ, Rossi MJ, Wood R, Usta J, Szulc Z, Bielawska A, Obeid LM, Hannun YA (2002) Biochemical mechanisms of the generation of endogenous long chain ceramide in response to exogenous short chain ceramide in the A549 human lung adenocarcinoma cell line. J Biol Chem 277:12960–12969

    Article  PubMed  CAS  Google Scholar 

  29. Osawa Y, Uchinami H, Bielawski J, Schwabe RF, Hannun YA, Brenner DA (2005) Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha¦. J Biol Chem 280:27879–27887

    Article  PubMed  CAS  Google Scholar 

  30. Pahan K, Sheikh FG, Khan M, Namboodiri AM, Singh I (1998) Sphingomyelinase and ceramide stimulate the expression of inducible nitric-oxide synthase in rat primary astrocytes. J Biol Chem 273:2591–2600

    Article  PubMed  CAS  Google Scholar 

  31. Puranam K, Qian WH, Nikbakht K, Venable M, Obeid L, Hannun Y, Boustany RM (1997) Upregulation of Bcl-2 and elevation of ceramide in Batten disease. Neuropediatrics 28:37–41

    Article  PubMed  CAS  Google Scholar 

  32. Puranam KL, Guo WX, Qian WH, Nikbakht K, Boustany RM (1999) CLN3 defines a novel antiapoptotic pathway operative in neurodegeneration and mediated by ceramide. Mol Genet Metab 66:294–308

    Article  PubMed  CAS  Google Scholar 

  33. Qin J, Berdyshev E, Goya J, Natarajan V, Dawson G (2010) Neurons and oligodendrocytes recycle sphingosine 1-phosphate to ceramide: significance for apoptosis and multiple sclerosis. J Biol Chem 285:14134–14143

    Article  PubMed  CAS  Google Scholar 

  34. Quintana A, Muller M, Frausto RF, Ramos R, Getts DR, Sanz E, Hofer MJ, Krauthausen M, King NJ, Hidalgo J, Campbell IL (2009) Site-specific production of IL-6 in the central nervous system retargets and enhances the inflammatory response in experimental autoimmune encephalomyelitis. J Immunol 183:2079–2088

    Article  PubMed  CAS  Google Scholar 

  35. Rosen H, Gonzalez-Cabrera PJ, Sanna MG, Brown S (2009) Sphingosine 1-phosphate receptor signaling. Annu Rev Biochem 78:743–768

    Article  PubMed  CAS  Google Scholar 

  36. Sanvicens N, Cotter TG (2006) Ceramide is the key mediator of oxidative stress-induced apoptosis in retinal photoreceptor cells. J Neurochem 98:1432–1444

    Article  PubMed  CAS  Google Scholar 

  37. Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Piontek J, Blasig IE, Dijkstra CD, Ronken E, De Vries HE (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676

    Article  PubMed  CAS  Google Scholar 

  38. Schutze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, Kronke M (1992) TNF activates NF-kappa B by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71:765–776

    Article  PubMed  CAS  Google Scholar 

  39. Simons K, van MG (1988) Lipid sorting in epithelial cells. Biochemistry 27:6197–6202

    Article  PubMed  CAS  Google Scholar 

  40. Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Protein kinase Calpha-RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281:8379–8388

    Article  PubMed  CAS  Google Scholar 

  41. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  PubMed  CAS  Google Scholar 

  42. van der Goes A, Wouters D, van der Pol SM, Huizinga R, Ronken E, Adamson P, Greenwood J, Dijkstra CD, De Vries HE (2001) Reactive oxygen species enhance the migration of monocytes across the blood–brain barrier in vitro. FASEB J 15:1852–1854

    PubMed  Google Scholar 

  43. van der Valk P, De Groot CJ (2000) Staging of multiple sclerosis (MS) lesions: pathology of the time frame of MS. Neuropathol Appl Neurobiol 26:2–10

    Article  PubMed  Google Scholar 

  44. van Doorn R, van Horssen J, Verzijl D, Witte M, Ronken E, van het Hof B, Lakeman K, Dijkstra CD, van der Valk P, Reijerkerk A, Alewijnse AE, Peters SL, De Vries HE (2010) Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia 58:1465–1476

    PubMed  Google Scholar 

  45. van Horssen J, Schreibelt G, Bo L, Montagne L, Drukarch B, van Muiswinkel FL, De Vries HE (2006) NAD(P)H:quinone oxidoreductase 1 expression in multiple sclerosis lesions. Free Radic Biol Med 41:311–317

    Article  PubMed  Google Scholar 

  46. Vu K, Weksler B, Romero I, Couraud PO, Gelli A (2009) Immortalized human brain endothelial cell line HCMEC/D3 as a model of the blood–brain barrier facilitates in vitro studies of central nervous system infection by Cryptococcus neoformans. Eukaryot Cell 8:1803–1807

    Article  PubMed  CAS  Google Scholar 

  47. Wang G, Dinkins M, He Q, Zhu G, Poirier C, Campbell A, Mayer-Proschel M, Bieberich E (2012) Astrocytes secrete exosomes enriched with pro-apoptotic ceramide and prostate apoptosis response 4 (PAR-4): a potential mechanism of apoptosis induction in Alzheimer’s disease (AD). J Biol Chem 287:21384–21395

    Article  PubMed  CAS  Google Scholar 

  48. Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO (2005) Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J 19:1872–1874

    PubMed  CAS  Google Scholar 

  49. Wheeler D, Bandaru VV, Calabresi PA, Nath A, Haughey NJ (2008) A defect of sphingolipid metabolism modifies the properties of normal appearing white matter in multiple sclerosis. Brain 131:3092–3102

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Dutch MS Research Foundation (AR and HEdeV, Grant 08-642, RvD Grant 05-388, PN 09-358), which had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The Netherlands Brain Bank received permission to perform autopsies, for the use of tissue, and for access to medical records for research purposes from the Ethical Committee of the VU University Medical Center, Amsterdam, The Netherlands. All patients and controls, or their next of kin, had given informed consent for autopsy and the use of their brain tissue for research purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga E. de Vries.

Additional information

R. van Doorn and P.G. Nijland contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Doorn, R., Nijland, P.G., Dekker, N. et al. Fingolimod attenuates ceramide-induced blood–brain barrier dysfunction in multiple sclerosis by targeting reactive astrocytes. Acta Neuropathol 124, 397–410 (2012). https://doi.org/10.1007/s00401-012-1014-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-012-1014-4

Keywords

Navigation