Skip to main content

Advertisement

Log in

Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Neurons are very sensitive to DNA damage induced by endogenous and exogenous genotoxic agents, as defective DNA repair can lead to neurodevelopmental disorders, brain tumors and neurodegenerative diseases with severe clinical manifestations. Understanding the impact of DNA damage/repair mechanisms on the nuclear organization, particularly on the regulation of transcription and cell cycle, is essential to know the pathophysiology of defective DNA repair syndromes. In this work, we study the nuclear architecture and spatiotemporal organization of chromatin compartments involved in the DNA damage response (DDR) in rat sensory ganglion neurons exposed to X-ray irradiation (IR). We demonstrate that the neuronal DDR involves the formation of two categories of DNA-damage processing chromatin compartments: transient, disappearing within the 1 day post-IR, and persistent, where unrepaired DNA is accumulated. Both compartments concentrate components of the DDR pathway, including γH2AX, pATM and 53BP1. Furthermore, DNA damage does not induce neuronal apoptosis but triggers the G0–G1 cell cycle phase transition, which is mediated by the activation of the ATM-p53 pathway and increased protein levels of p21 and cyclin D1. Moreover, the run on transcription assay reveals a severe inhibition of transcription at 0.5 h post-IR, followed by its rapid recovery over the 1 day post-IR in parallel with the progression of DNA repair. Therefore, the response of healthy neurons to DNA damage involves a transcription- and cell cycle-dependent but apoptosis-independent process. Furthermore, we propose that the segregation of unrepaired DNA in a few persistent chromatin compartments preserves genomic stability of undamaged DNA and the global transcription rate in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbas T, Dutta A (2009) p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  PubMed  CAS  Google Scholar 

  2. Aten JA, Stap J, Krawczyk PM, van Oven CH, Hoebe RA, Essers J, Kanaar R (2004) Dynamics of DNA double-strand breaks revealed by clustering of damaged chromosome domains. Science 303:92–95

    Article  PubMed  CAS  Google Scholar 

  3. Baltanas F, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M (2011) Nucleolar disruption and Cajal body disassembly are nuclear hallmarks of DNA damage-induced neurodegeneration in Purkinje cells. Brain Pathol 21:374–388

    Article  PubMed  CAS  Google Scholar 

  4. Baltanas F, Casafont I, Lafarga V, Weruaga E, Alonso JR, Berciano MT, Lafarga M (2011) Purkinje cell degeneration in pcd mice reveals large scale chromatin reorganization and gene silencing linked to defective DNA repair. J Biol Chem 286:28287–28302

    Article  PubMed  CAS  Google Scholar 

  5. Bauer S, Patterson PH (2005) The cell cycle-apoptosis connection revisited in the adult brain. J Cell Biol 171:641–650

    Article  PubMed  CAS  Google Scholar 

  6. Bekker-Jensen S, Mailand N (2010) Assembly and function of DNA double-strand break repair foci in mammalian cells. DNA Repair 9:1219–1228

    Article  PubMed  CAS  Google Scholar 

  7. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447:407–412

    Article  PubMed  CAS  Google Scholar 

  8. Boisvert FM, Lamond AI (2010) p53-dependent subcellular proteome localization following DNA damage. Proteomics 10:4087–4097

    Article  PubMed  CAS  Google Scholar 

  9. Casafont I, Navascués J, Pena E, Lafarga M, Berciano MT (2006) Nuclear organization and dynamics of transcription sites in rat sensory ganglia neurons detected by incorporation of 5′-fluororidine into nascent RNA. Neuroscience 140:453–462

    Article  PubMed  CAS  Google Scholar 

  10. Cavaletti G, Marmiroli P (2010) Chemotherapy-induced peripheral neurotoxicity. Nat Rev Neurol 6:657–666

    Article  PubMed  Google Scholar 

  11. Chakalova L, Fraser P (2010) Organization of transcription. Cold Spring Harb Perspect Biol 2:a000729

    Article  PubMed  Google Scholar 

  12. Dellaire G, Kepkay R, Bazett-Jones DP (2009) High resolution imaging of changes in the structure and spatial organization of chromatin, γ-H2AX and the MRN complex within etoposide-induced DNA repair foci. Cell Cycle 8:1–20

    Article  Google Scholar 

  13. Dimitrova N, Chen YC, Spector DL, de Lange T (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456:524–528

    Article  PubMed  CAS  Google Scholar 

  14. Essers J, Vermeulen W, Houtsmuller AB (2006) DNA damage repair: anytime, anywhere?. Curr Opin Cell Biol 18:240–246

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of genome. DNA Repair 3:959–967

    Article  PubMed  CAS  Google Scholar 

  16. Ferrer I, Pozas E, Planas AM (1997) Ubiquitination of apoptotic cells in the developing cerebellum of the rat following ionizing radiation or methylazoxymethanol injection. Acta Neuropathol 93:402–407

    Article  PubMed  CAS  Google Scholar 

  17. Helton ES, Chen X (2007) p53-modulation of the DNA damage response. J Cell Biochem 100:883–896

    Article  PubMed  CAS  Google Scholar 

  18. Hetman M, Vashishta A, Rempala G (2010) Neurotoxic mechanisms of DNA damage: focus on transcriptional inhibition. J Neurochem 114:1537–1549

    Article  PubMed  CAS  Google Scholar 

  19. Iborra FJ, Pombo A, Jackson DA, Cook PR (1996) Active RNA polymerases are localized within discrete transcription “factories” in human nuclei. J Cell Sci 109:1427–1436

    PubMed  CAS  Google Scholar 

  20. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27:247–254

    Article  PubMed  CAS  Google Scholar 

  21. Klein EA, Assoian RK (2008) Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 121:3853–3857

    Article  PubMed  CAS  Google Scholar 

  22. Kruhlak MJ, Celeste A, Dellaire G, Fernandez-Capetillo O, Müller WG, McNally JG, Bazzett-Jones DP, Nussenzweig A (2006) Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 172:823–834

    Article  PubMed  CAS  Google Scholar 

  23. Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ, Emokpae R, Gorospe M, Mattson MP (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41:549–561

    Article  PubMed  CAS  Google Scholar 

  24. Kruman II, Schwartz EI (2008) DNA damage response and neuroprotection. Frontiers Biosci 13:2504–2515

    Article  CAS  Google Scholar 

  25. Lafarga M, Casafont I, Bengoechea R, Tapia O, Berciano MT (2009) Cajal’s contribution to the knowledge of the neuronal cell nucleus. Chromosoma 118:437–443

    Article  PubMed  Google Scholar 

  26. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signaling and cancer. Nat Rev Mol Cell Biol 9:759–769

    Article  PubMed  CAS  Google Scholar 

  27. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Ann Rev Biochem 79:181–211

    Article  PubMed  CAS  Google Scholar 

  28. Ljungman M, Lane DP (2004) Transcription-guarding the genome by sensing DNA damage. Nat Rev Cancer 4:727–737

    Article  PubMed  CAS  Google Scholar 

  29. Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5:255–260

    Article  PubMed  CAS  Google Scholar 

  30. Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131:887–900

    Article  PubMed  CAS  Google Scholar 

  31. McKinnon PJ (2009) DNA repair deficiency and neurological disease. Nat Rev Neurosci 10:100–112

    Article  PubMed  CAS  Google Scholar 

  32. Misteli T, Spector DL (2011) The Nucleus. Cold Spring Harbor Lab Press, Cold Spring Harbor

    Google Scholar 

  33. Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10:243–254

    Article  PubMed  CAS  Google Scholar 

  34. Murga M, Jaco I, Fan Y, Soria R, Martinez-Pastor B, Cuadrado M, Yang SM, Blasco MA, Skoultchi AI, Fernandez-Capetillo O (2007) Global chromatin compaction limits the strength of the DNA damage response. J Cell Biol 178:1101–1108

    Article  PubMed  CAS  Google Scholar 

  35. Noon AT, Shibata A, Rief N, Löbrich M, Stewart GS, Jeggo PA, Goodarzi AA (2010) 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strands break repair. Nature Cell Biol 12:177–184

    Article  PubMed  CAS  Google Scholar 

  36. Nouspikel T (2007) DNA repair in differentiated cells: some new answers to old questions. Neuroscience 145:1213–1221

    Article  PubMed  CAS  Google Scholar 

  37. Olive PL, Banáth JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protocol 1:23–29

    Article  CAS  Google Scholar 

  38. Pena E, Berciano MT, Fernandez R, Crespo P, Lafarga M (2000) Stress-induced activation of c-Jun N-terminal kinase in sensory ganglia neurons. Accumulation in nuclear domains enriched in splicing factors and distribution in perichromatin fibrils. Exp Cell Res 256:179–191

    Article  PubMed  CAS  Google Scholar 

  39. Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M (2001) Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430:250–263

    Article  PubMed  CAS  Google Scholar 

  40. Pryde F, Khalili S, Robertson K, Selfridge J, Ritchie AM, Melton DW, Jullien D, Adachi Y (2005) 53BP1 exchanges slowly at the sites of DNA damage and appears to require RNA for its association with chromatin. J Cell Sci 118:2043–2055

    Article  PubMed  CAS  Google Scholar 

  41. Rass U, Ahel I, West SC (2007) Defective DNA repair and neurodegeneration disease. Cell 130:991–1004

    Article  PubMed  CAS  Google Scholar 

  42. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–1262

    Article  PubMed  CAS  Google Scholar 

  43. Shackelford DA (2006) DNA end joining activity is reduced in Alzheimer’s disease. Neurobiol Aging 27:596–605

    Article  PubMed  CAS  Google Scholar 

  44. Shiloh Y (2006) The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31:402–441

    Article  PubMed  CAS  Google Scholar 

  45. Shull ERP, Lee Y, Nakane H, Stracker TH, Zhao J, Russell HR, Petrini JHJ, McKinnon PJ (2007) Differential DNA damage signaling accounts for distinct neuronal apoptosis responses in ATLD and NBS. Genes Dev 23:171–180

    Article  Google Scholar 

  46. Soutoglou E, Dorn JF, Sengupta K, Jasin M, Nussenzweig A, Ried T, Danuser G, Misteli T (2007) Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol 9:675–682

    Article  PubMed  CAS  Google Scholar 

  47. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Löbrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396

    Article  PubMed  CAS  Google Scholar 

  48. Takizawa T, Meshorer E (2008) Chromatin and nuclear architecture in the nervous system. Trends Neurosci 31:343–352

    Article  PubMed  CAS  Google Scholar 

  49. Yang ES, Wang H, Jiang G, Nowsheen S, Fu A, Hallahan DE, Xia F (2009) Lithium-mediated protection of hippocampal cells involves enhancement of DNA-PK-dependent repair in mice. J Clin Invest 119:1124–1135

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Saray Pereda for technical assistance. This work was supported by the following grants: “Dirección General de Investigación” (BFU2008-00175), “Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas” (CIBERNED; CB06/05/0037) Spain, and “Proyecto I+D+I de la Comunidad de Cantabria” (FMV-UC 09/02) Santander, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Lafarga.

Additional information

I. Casafont and A. Palanca contributed equally to the work reported here.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casafont, I., Palanca, A., Lafarga, V. et al. Effect of ionizing radiation in sensory ganglion neurons: organization and dynamics of nuclear compartments of DNA damage/repair and their relationship with transcription and cell cycle. Acta Neuropathol 122, 481–493 (2011). https://doi.org/10.1007/s00401-011-0869-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0869-0

Keywords