Skip to main content

Advertisement

Log in

Misfolded tau protein and disease modifying pathways in transgenic rodent models of human tauopathies

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Human tauopathies represent a heterogeneous group of neurodegenerative disorders such as Alzheimer’s disease (AD) that are characterized by the presence of intracellular accumulations of abnormal filaments of protein tau. Presently, AD poses an increasing public health concern, because it affects nearly 2% of the population in industrialized countries and the number of patients is expected to increase threefold within the next 50 years. Therefore, the identification of disease modifying pathways that will lead to the development of novel therapeutic approaches targeting downstream molecular events of the tauopathy is of paramount importance. In order to identify factors that may exacerbate or inhibit the disease phenotype a number of genetically modified rodent models reproducing key clinical, histopathological and molecular hallmarks of human tauopathies were developed. Current tau transgenic rodent models express as a transgene either an individual or all six human wild-type tau isoforms, mutant tau linked to FTDP-17, or structurally modified tau species derived from AD. In this review we will provide an up-to-date account of various facets of the tau neurodegenerative cascade with a special emphasis on the evolution of neurofibrillary tangles, neuronal death and neuroinflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allen B, Ingram E, Takao M et al (2002) Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. J Neurosci 22:9340–9351

    PubMed  CAS  Google Scholar 

  2. Alonso A, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 98:6923–6928. doi:10.1073/pnas.121119298

    PubMed  CAS  Google Scholar 

  3. Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2:783–787. doi:10.1038/nm0796-783

    PubMed  CAS  Google Scholar 

  4. Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA 94:298–303. doi:10.1073/pnas.94.1.298

    PubMed  CAS  Google Scholar 

  5. Alonso AD, Zaidi T, Novak M et al (2001) Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem 276:37967–37973. doi:10.1074/jbc.M006497200

    PubMed  CAS  Google Scholar 

  6. Anderson AJ, Su JH, Cotman CW (1996) DNA damage and apoptosis in Alzheimer’s disease: colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay. J Neurosci 16:1710–1719

    PubMed  CAS  Google Scholar 

  7. Andorfer C, Kress Y, Espinoza M et al (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86:582–590. doi:10.1046/j.1471-4159.2003.01879.x

    PubMed  CAS  Google Scholar 

  8. Andorfer C, Acker CM, Kress Y et al (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25:5446–5454. doi:10.1523/JNEUROSCI.4637-04.2005

    PubMed  CAS  Google Scholar 

  9. Arendash GW, Lewis J, Leighty RE et al (2004) Multi-metric behavioral comparison of APPsw and P301L models for Alzheimer’s disease: linkage of poorer cognitive performance to tau pathology in forebrain. Brain Res 1012:29–41. doi:10.1016/j.brainres.2004.02.081

    PubMed  CAS  Google Scholar 

  10. Bancher C, Brunner C, Lassmann H et al (1989) Tau and ubiquitin immunoreactivity at different stages of formation of Alzheimer neurofibrillary tangles. Prog Clin Biol Res 317:837–848

    PubMed  CAS  Google Scholar 

  11. Bellucci A, Westwood AJ, Ingram E et al (2004) Induction of inflammatory mediators and microglial activation in mice transgenic for mutant human P301S tau protein. Am J Pathol 165:1643–1652

    PubMed  CAS  Google Scholar 

  12. Berger Z, Roder H, Hanna A et al (2007) Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci 27:3650–3662. doi:10.1523/JNEUROSCI.0587-07.2007

    PubMed  CAS  Google Scholar 

  13. Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378. doi:10.1083/jcb.101.4.1371

    PubMed  CAS  Google Scholar 

  14. Bobinski M, Wegiel J, Wisniewski HM et al (1996) Neurofibrillary pathology–correlation with hippocampal formation atrophy in Alzheimer disease. Neurobiol Aging 17:909–919

    PubMed  CAS  Google Scholar 

  15. Boekhoorn K, Terwel D, Biemans B et al (2006) Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy. J Neurosci 26:3514–3523. doi:10.1523/JNEUROSCI.5425-05.2006

    PubMed  CAS  Google Scholar 

  16. Bondareff W, Wischik CM, Novak M et al (1990) Molecular analysis of neurofibrillary degeneration in Alzheimer’s disease. An immunohistochemical study. Am J Pathol 137:711–723

    PubMed  CAS  Google Scholar 

  17. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357. doi:10.1016/S0197-4580(97)00056-0

    PubMed  CAS  Google Scholar 

  18. Brady RM, Zinkowski RP, Binder LI (1995) Presence of tau in isolated nuclei from human brain. Neurobiol Aging 16:479–486. doi:10.1016/0197-4580(94)00170-6

    PubMed  CAS  Google Scholar 

  19. Bramblett GT, Goedert M, Jakes R et al (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:1089–1099. doi:10.1016/0896-6273(93)90057-X

    PubMed  CAS  Google Scholar 

  20. Brandt R, Lee G, Teplow DB, Shalloway D, Abdel-Ghany M (1994) Differential effect of phosphorylation and substrate modulation on tau’s ability to promote microtubule growth and nucleation. J Biol Chem 269:11776–11782

    PubMed  CAS  Google Scholar 

  21. Brandt R, Leger J, Lee G (1995) Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol 131:1327–1340. doi:10.1083/jcb.131.5.1327

    PubMed  CAS  Google Scholar 

  22. Brion JP, Tremp G, Octave JN (1999) Transgenic expression of the shortest human tau affects its compartmentalization and its phosphorylation as in the pretangle stage of Alzheimer’s disease. Am J Pathol 154:255–270

    PubMed  CAS  Google Scholar 

  23. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130. doi:10.1016/S0165-0173(00)00019-9

    PubMed  CAS  Google Scholar 

  24. Bussiere T, Gold G, Kovari E et al (2003) Stereologic analysis of neurofibrillary tangle formation in prefrontal cortex area 9 in aging and Alzheimer’s disease. Neuroscience 117:577–592. doi:10.1016/S0306-4522(02)00942-9

    PubMed  CAS  Google Scholar 

  25. Cente M, Filipcik P, Pevalova M, Novak M (2006) Expression of a truncated tau protein induces oxidative stress in a rodent model of tauopathy. Eur J NeuroSci 24:1085–1090. doi:10.1111/j.1460-9568.2006.04986.x

    PubMed  Google Scholar 

  26. Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225. doi:10.1016/0022-2836(77)90213-3

    PubMed  CAS  Google Scholar 

  27. Cleveland DW, Hwo SY, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116:227–247. doi:10.1016/0022-2836(77)90214-5

    PubMed  CAS  Google Scholar 

  28. Cole AR, Noble W, van Aalten L et al (2007) Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem 103:1132–1144. doi:10.1111/j.1471-4159.2007.04829.x

    PubMed  CAS  Google Scholar 

  29. Collins RJ, Harmon BV, Gobe GC, Kerr JF (1992) Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol 61:451–453. doi:10.1080/09553009214551201

    PubMed  CAS  Google Scholar 

  30. Cras P, Kawai M, Siedlak S, Perry G (1991) Microglia are associated with the extracellular neurofibrillary tangles of Alzheimer disease. Brain Res 558:312–314. doi:10.1016/0006-8993(91)90783-R

    PubMed  CAS  Google Scholar 

  31. Crowther RA (1991) Straight and paired helical filaments in Alzheimer disease have a common structural unit. Proc Natl Acad Sci USA 88:2288–2292. doi:10.1073/pnas.88.6.2288

    PubMed  CAS  Google Scholar 

  32. Cullen KM, Halliday GM, Double KL et al (1997) Cell loss in the nucleus basalis is related to regional cortical atrophy in Alzheimer’s disease. Neuroscience 78:641–652. doi:10.1016/S0306-4522(96)00569-6

    PubMed  CAS  Google Scholar 

  33. Dabir DV, Robinson MB, Swanson E et al (2006) Impaired glutamate transport in a mouse model of tau pathology in astrocytes. J Neurosci 26:644–654. doi:10.1523/JNEUROSCI.3861-05.2006

    PubMed  CAS  Google Scholar 

  34. David DC, Hauptmann S, Scherping I et al (2005) Proteomic and functional analyses reveal a mitochondrial dysfunction in P301L tau transgenic mice. J Biol Chem 280:23802–23814. doi:10.1074/jbc.M500356200

    PubMed  CAS  Google Scholar 

  35. Dawson HN, Cantillana V, Chen L, Vitek MP (2007) The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. J Neurosci 27:9155–9168. doi:10.1523/JNEUROSCI.5492-06.2007

    PubMed  CAS  Google Scholar 

  36. Delobel P, Lavenir I, Ghetti B, Holzer M, Goedert M (2006) Cell-cycle markers in a transgenic mouse model of human tauopathy: increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. Am J Pathol 168:878–887. doi:10.2353/ajpath.2006.050540

    PubMed  CAS  Google Scholar 

  37. Delobel P, Lavenir I, Fraser G et al (2008) Analysis of tau phosphorylation and truncation in a mouse model of human tauopathy. Am J Pathol 172:123–131. doi:10.2353/ajpath.2008.070627

    PubMed  CAS  Google Scholar 

  38. Denk F, Wade-Martins R (2009) Knock-out and transgenic mouse models of tauopathies. Neurobiol Aging 30:1–13. doi:10.1016/j.neurobiolaging.2007.05.010

    PubMed  CAS  Google Scholar 

  39. Deters N, Ittner LM, Gotz J (2008) Divergent phosphorylation pattern of tau in P301L tau transgenic mice. Eur J NeuroSci 28:137–147. doi:10.1111/j.1460-9568.2008.06318.x

    PubMed  Google Scholar 

  40. Dickson DW, Sinicropi S, Yen SH et al (1996) Glycation and microglial reaction in lesions of Alzheimer’s disease. Neurobiol Aging 17:733–743. doi:10.1016/0197-4580(96)00116-9

    PubMed  CAS  Google Scholar 

  41. DiPatre PL, Gelman BB (1997) Microglial cell activation in aging and Alzheimer disease: partial linkage with neurofibrillary tangle burden in the hippocampus. J Neuropathol Exp Neurol 56:143–149. doi:10.1097/00005072-199702000-00004

    PubMed  CAS  Google Scholar 

  42. Dou F, Netzer WJ, Tanemura K et al (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci USA 100:721–726. doi:10.1073/pnas.242720499

    PubMed  CAS  Google Scholar 

  43. Duff K, Knight H, Refolo LM et al (2000) Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiol Dis 7:87–98. doi:10.1006/nbdi.1999.0279

    PubMed  CAS  Google Scholar 

  44. Duyckaerts C, Potier MC, Delatour B (2008) Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol 115:5–38. doi:10.1007/s00401-007-0312-8

    PubMed  Google Scholar 

  45. Eckermann K, Mocanu MM, Khlistunova I et al (2007) The beta-propensity of tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 282:31755–31765. doi:10.1074/jbc.M705282200

    PubMed  CAS  Google Scholar 

  46. Eckert A, Hauptmann S, Scherping I et al (2008) Soluble beta-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis 5:157–159. doi:10.1159/000113689

    PubMed  CAS  Google Scholar 

  47. Egashira N, Iwasaki K, Takashima A et al (2005) Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice. Brain Res 1059:7–12. doi:10.1016/j.brainres.2005.08.004

    PubMed  CAS  Google Scholar 

  48. Eriksen JL, Janus CG (2007) Plaques, tangles, and memory loss in mouse models of neurodegeneration. Behav Genet 37:79–100. doi:10.1007/s10519-006-9118-z

    PubMed  Google Scholar 

  49. Forman MS, Lal D, Zhang B et al (2005) Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration. J Neurosci 25:3539–3550. doi:10.1523/JNEUROSCI.0081-05.2005

    PubMed  CAS  Google Scholar 

  50. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85:4051–4055. doi:10.1073/pnas.85.11.4051

    PubMed  CAS  Google Scholar 

  51. Gomez-Isla T, Price JL, McKeel DW Jr et al (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500

    PubMed  CAS  Google Scholar 

  52. Gomez-Isla T, Hollister R, West H et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24. doi:10.1002/ana.410410106

    PubMed  CAS  Google Scholar 

  53. Gotz J, Probst A, Spillantini MG et al (1995) Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO J 14:1304–1313

    PubMed  CAS  Google Scholar 

  54. Gotz J, Chen F, Barmettler R, Nitsch RM (2001) Tau filament formation in transgenic mice expressing P301L tau. J Biol Chem 276:529–534. doi:10.1074/jbc.M006531200

    PubMed  CAS  Google Scholar 

  55. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495. doi:10.1126/science.1062097

    PubMed  CAS  Google Scholar 

  56. Gotz J, Tolnay M, Barmettler R et al (2001) Oligodendroglial tau filament formation in transgenic mice expressing G272V tau. Eur J NeuroSci 13:2131–2140. doi:10.1046/j.0953-816x.2001.01604.x

    PubMed  CAS  Google Scholar 

  57. Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 87:5827–5831. doi:10.1073/pnas.87.15.5827

    PubMed  CAS  Google Scholar 

  58. Grundke-Iqbal I, Iqbal K, Quinlan M et al (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    PubMed  CAS  Google Scholar 

  59. Grundke-Iqbal I, Iqbal K, Tung YC et al (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917. doi:10.1073/pnas.83.13.4913

    PubMed  CAS  Google Scholar 

  60. Halverson RA, Lewis J, Frausto S, Hutton M, Muma NA (2005) Tau protein is cross-linked by transglutaminase in P301L tau transgenic mice. J Neurosci 25:1226–1233. doi:10.1523/JNEUROSCI.3263-04.2005

    PubMed  CAS  Google Scholar 

  61. Hanes J, Zilka N, Bartkova M, Caletkova M, Dobrota D, Novak M (2009) Rat tau proteome consists of six tau isoforms: implication for animal models of human tauopathies. J Neurochem 108:1167–1176

    Google Scholar 

  62. Hanger DP, Byers HL, Wray S et al (2007) Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 282:23645–23654. doi:10.1074/jbc.M703269200

    PubMed  CAS  Google Scholar 

  63. Higuchi M, Ishihara T, Zhang B et al (2002) Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron 35:433–446. doi:10.1016/S0896-6273(02)00789-4

    PubMed  CAS  Google Scholar 

  64. Higuchi M, Zhang B, Forman MS et al (2005) Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J Neurosci 25:9434–9443. doi:10.1523/JNEUROSCI.2691-05.2005

    PubMed  CAS  Google Scholar 

  65. Hong M, Zhukareva V, Vogelsberg-Ragaglia V et al (1998) Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917. doi:10.1126/science.282.5395.1914

    PubMed  CAS  Google Scholar 

  66. Horiguchi T, Uryu K, Giasson BI et al (2003) Nitration of tau protein is linked to neurodegeneration in tauopathies. Am J Pathol 163:1021–1031

    PubMed  CAS  Google Scholar 

  67. Hrnkova M, Zilka N, Minichova Z, Koson P, Novak M (2007) Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats. Brain Res 1130:206–213. doi:10.1016/j.brainres.2006.10.085

    PubMed  CAS  Google Scholar 

  68. Hua Q, He RQ (2002) Effect of phosphorylation and aggregation on tau binding to DNA. Protein Pept Lett 9:349–357. doi:10.2174/0929866023408652

    PubMed  CAS  Google Scholar 

  69. Ikeda M, Shoji M, Kawarai T et al (2005) Accumulation of filamentous tau in the cerebral cortex of human tau R406W transgenic mice. Am J Pathol 166:521–531

    PubMed  CAS  Google Scholar 

  70. Imamura K, Sawada M, Ozaki N et al (2001) Activation mechanism of brain microglia in patients with diffuse neurofibrillary tangles with calcification: a comparison with Alzheimer disease. Alzheimer Dis Assoc Disord 15:45–50. doi:10.1097/00002093-200101000-00006

    PubMed  CAS  Google Scholar 

  71. Iqbal K, Grundke-Iqbal I, Zaidi T et al (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 2:421–426. doi:10.1016/S0140-6736(86)92134-3

    PubMed  CAS  Google Scholar 

  72. Iqbal K, Grundke-Iqbal I, Smith AJ et al (1989) Identification and localization of a tau peptide to paired helical filaments of Alzheimer disease. Proc Natl Acad Sci USA 86:5646–5650. doi:10.1073/pnas.86.14.5646

    PubMed  CAS  Google Scholar 

  73. Ishihara T, Hong M, Zhang B et al (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24:751–762. doi:10.1016/S0896-6273(00)81127-7

    PubMed  CAS  Google Scholar 

  74. Ishihara T, Zhang B, Higuchi M et al (2001) Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol 158:555–562

    PubMed  CAS  Google Scholar 

  75. Ishizawa K, Dickson DW (2001) Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J Neuropathol Exp Neurol 60:647–657

    PubMed  CAS  Google Scholar 

  76. Ittner LM, Fath T, Ke YD et al (2008) Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proc Natl Acad Sci USA 105:15997–16002. doi:10.1073/pnas.0808084105

    PubMed  CAS  Google Scholar 

  77. Jancsik V, Filliol D, Felter S, Rendon A (1989) Binding of microtubule-associated proteins (MAPs) to rat brain mitochondria: a comparative study of the binding of MAP2, its microtubule-binding and projection domains, and tau proteins. Cell Motil Cytoskeleton 14:372–381. doi:10.1002/cm.970140307

    PubMed  CAS  Google Scholar 

  78. Jellinger KA (1998) The neuropathological diagnosis of Alzheimer disease. J Neural Transm Suppl 53:97–118

    PubMed  CAS  Google Scholar 

  79. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17. doi:10.1111/j.1582-4934.2001.tb00134.x

    PubMed  CAS  Google Scholar 

  80. Jellinger KA (2006) Challenges in neuronal apoptosis. Curr Alzheimer Res 3:377–391. doi:10.2174/156720506778249434

    PubMed  CAS  Google Scholar 

  81. Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721–5729. doi:10.1242/jcs.01558

    PubMed  CAS  Google Scholar 

  82. Katsuse O, Lin WL, Lewis J, Hutton ML, Dickson DW (2006) Neurofibrillary tangle-related synaptic alterations of spinal motor neurons of P301L tau transgenic mice. Neurosci Lett 409:95–99. doi:10.1016/j.neulet.2006.09.021

    PubMed  CAS  Google Scholar 

  83. Kelleher I, Garwood C, Hanger DP, Anderton BH, Noble W (2007) Kinase activities increase during the development of tauopathy in htau mice. J Neurochem 103:2256–2267. doi:10.1111/j.1471-4159.2007.04930.x

    PubMed  CAS  Google Scholar 

  84. Kempf M, Clement A, Faissner A, Lee G, Brandt R (1996) Tau binds to the distal axon early in development of polarity in a microtubule- and microfilament-dependent manner. J Neurosci 16:5583–5592

    PubMed  CAS  Google Scholar 

  85. Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197:192–193. doi:10.1038/197192b0

    PubMed  CAS  Google Scholar 

  86. Kobayashi K, Hayashi M, Fukutani Y et al (1999) KP1 expression of ghost Pick bodies, amyloid P-positive astrocytes and selective nigral degeneration in early onset Picks disease. Clin Neuropathol 18:240–249

    PubMed  CAS  Google Scholar 

  87. Kopke E, Tung YC, Shaikh S et al (1993) Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease. J Biol Chem 268:24374–24384

    PubMed  CAS  Google Scholar 

  88. Korenova M, Zilka N, Stozicka Z, Bugos O, Vanicky I, Novak M (2009) NeuroScale, the battery of behavioral tests with novel scoring system for phenotyping of transgenic rat model of tauopathy. J Neurosci Methods 177:108–114

    PubMed  Google Scholar 

  89. Koson P, Zilka N, Kovac A et al (2008) Truncated tau expression levels determine life span of a rat model of tauopathy without causing neuronal loss or correlating with terminal neurofibrillary tangle load. Eur J NeuroSci 28:239–246. doi:10.1111/j.1460-9568.2008.06329.x

    PubMed  Google Scholar 

  90. Ksiezak-Reding H, Liu WK, Yen SH (1992) Phosphate analysis and dephosphorylation of modified tau associated with paired helical filaments. Brain Res 597:209–219. doi:10.1016/0006-8993(92)91476-U

    PubMed  CAS  Google Scholar 

  91. Lambourne SL, Sellers LA, Bush TG et al (2005) Increased tau phosphorylation on mitogen-activated protein kinase consensus sites and cognitive decline in transgenic models for Alzheimer’s disease and FTDP-17: evidence for distinct molecular processes underlying tau abnormalities. Mol Cell Biol 25:278–293. doi:10.1128/MCB.25.1.278-293.2005

    PubMed  CAS  Google Scholar 

  92. Lambourne SL, Humby T, Isles AR et al (2007) Impairments in impulse control in mice transgenic for the human FTDP-17 tauV337M mutation are exacerbated by age. Hum Mol Genet 16:1708–1719. doi:10.1093/hmg/ddm119

    PubMed  CAS  Google Scholar 

  93. Ledesma MD, Bonay P, Colaco C, Avila J (1994) Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem 269:21614–21619

    PubMed  CAS  Google Scholar 

  94. Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251:675–678. doi:10.1126/science.1899488

    PubMed  CAS  Google Scholar 

  95. Lee VM, Kenyon TK, Trojanowski JQ (2005) Transgenic animal models of tauopathies. Biochim Biophys Acta 1739:251–259

    PubMed  CAS  Google Scholar 

  96. Leroy K, Bretteville A, Schindowski K et al (2007) Early axonopathy preceding neurofibrillary tangles in mutant tau transgenic mice. Am J Pathol 171:976–992. doi:10.2353/ajpath.2007.070345

    PubMed  CAS  Google Scholar 

  97. Lewis J, McGowan E, Rockwood J et al (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405. doi:10.1038/78078

    PubMed  CAS  Google Scholar 

  98. Liazoghli D, Perreault S, Micheva KD, Desjardins M, Leclerc N (2005) Fragmentation of the golgi apparatus induced by the overexpression of wild-type and mutant human tau forms in neurons. Am J Pathol 166:1499–1514

    PubMed  CAS  Google Scholar 

  99. Lim F, Hernandez F, Lucas JJ et al (2001) FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and Tau filaments in forebrain. Mol Cell Neurosci 18:702–714. doi:10.1006/mcne.2001.1051

    PubMed  CAS  Google Scholar 

  100. Lin WL, Lewis J, Yen SH, Hutton M, Dickson DW (2003) Ultrastructural neuronal pathology in transgenic mice expressing mutant (P301L) human tau. J Neurocytol 32:1091–1105. doi:10.1023/B:NEUR.0000021904.61387.95

    PubMed  CAS  Google Scholar 

  101. Lin WL, Lewis J, Yen SH, Hutton M, Dickson DW (2003) Filamentous tau in oligodendrocytes and astrocytes of transgenic mice expressing the human tau isoform with the P301L mutation. Am J Pathol 162:213–218

    PubMed  CAS  Google Scholar 

  102. Lin WL, Zehr C, Lewis J et al (2005) Progressive white matter pathology in the spinal cord of transgenic mice expressing mutant (P301L) human tau. J Neurocytol 34:397–410. doi:10.1007/s11068-006-8726-0

    PubMed  CAS  Google Scholar 

  103. Lucassen PJ, Chung WC, Kamphorst W, Swaab DF (1997) DNA damage distribution in the human brain as shown by in situ end labeling; area-specific differences in aging and Alzheimer disease in the absence of apoptotic morphology. J Neuropathol Exp Neurol 56:887–900. doi:10.1097/00005072-199708000-00007

    PubMed  CAS  Google Scholar 

  104. Lukiw WJ, Bazan NG (2000) Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem Res 25:1173–1184. doi:10.1023/A:1007627725251

    PubMed  CAS  Google Scholar 

  105. Mandelkow E, von Bergen M, Biernat J, Mandelkow EM (2007) Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 17:83–90. doi:10.1111/j.1750-3639.2007.00053.x

    PubMed  CAS  Google Scholar 

  106. Mandelkow EM, Mandelkow E (1998) Tau in Alzheimer’s disease. Trends Cell Biol 8:425–427. doi:10.1016/S0962-8924(98)01368-3

    PubMed  CAS  Google Scholar 

  107. McGeer PL, McGeer EG (1995) The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 21:195–218. doi:10.1016/0165-0173(95)00011-9

    PubMed  CAS  Google Scholar 

  108. McGeer PL, McGeer EG (2004) Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 1035:104–116. doi:10.1196/annals.1332.007

    PubMed  CAS  Google Scholar 

  109. Migheli A, Butler M, Brown K, Shelanski ML (1988) Light and electron microscope localization of the microtubule-associated tau protein in rat brain. J Neurosci 8:1846–1851

    PubMed  CAS  Google Scholar 

  110. Mocanu MM, Nissen A, Eckermann K et al (2008) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28:737–748. doi:10.1523/JNEUROSCI.2824-07.2008

    PubMed  CAS  Google Scholar 

  111. Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354. doi:10.1016/j.neurobiolaging.2004.05.010

    PubMed  CAS  Google Scholar 

  112. Mufson EJ, Ma SY, Cochran EJ et al (2000) Loss of nucleus basalis neurons containing trkA immunoreactivity in individuals with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 427:19–30. doi:10.1002/1096-9861(20001106)427:1<19::AID-CNE2>3.0.CO;2-A

    PubMed  CAS  Google Scholar 

  113. Murakami T, Paitel E, Kawarabayashi T et al (2006) Cortical neuronal and glial pathology in TgTauP301L transgenic mice: neuronal degeneration, memory disturbance, and phenotypic variation. Am J Pathol 169:1365–1375. doi:10.2353/ajpath.2006.051250

    PubMed  CAS  Google Scholar 

  114. Navarro P, Guerrero R, Gallego E et al (2008) Memory and exploratory impairment in mice that lack the Park-2 gene and that over-express the human FTDP-17 mutant Tau. Behav Brain Res 189:350–356. doi:10.1016/j.bbr.2008.01.017

    PubMed  CAS  Google Scholar 

  115. Noble W, Planel E, Zehr C et al (2005) Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci USA 102:6990–6995. doi:10.1073/pnas.0500466102

    PubMed  CAS  Google Scholar 

  116. Novak M, Wischik CM, Edwards P, Pannell R, Milstein C (1989) Characterisation of the first monoclonal antibody against the pronase resistant core of the Alzheimer PHF. Prog Clin Biol Res 317:755–761

    PubMed  CAS  Google Scholar 

  117. Novak M, Jakes R, Edwards PC, Milstein C, Wischik CM (1991) Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci USA 88:5837–5841. doi:10.1073/pnas.88.13.5837

    PubMed  CAS  Google Scholar 

  118. Novak M, Kabat J, Wischik CM (1993) Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J 12:365–370

    PubMed  CAS  Google Scholar 

  119. Novak M (1994) Truncated tau protein as a new marker for Alzheimer’s disease. Acta Virol 38:173–189

    PubMed  CAS  Google Scholar 

  120. Oka M, Katayama S, Watanabe C et al (1998) Argyrophilic structures stimulate glial reactions in neurofibrillary tangles and senile plaques. Neurol Res 20:121–126

    PubMed  CAS  Google Scholar 

  121. Overmyer M, Helisalmi S, Soininen H et al (1999) Reactive microglia in aging and dementia: an immunohistochemical study of postmortem human brain tissue. Acta Neuropathol 97:383–392. doi:10.1007/s004010051002

    PubMed  CAS  Google Scholar 

  122. Paulus W, Bancher C, Jellinger K (1993) Microglial reaction in Pick’s disease. Neurosci Lett 161:89–92. doi:10.1016/0304-3940(93)90147-D

    PubMed  CAS  Google Scholar 

  123. Pennanen L, Welzl H, D’Adamo P, Nitsch RM, Gotz J (2004) Accelerated extinction of conditioned taste aversion in P301L tau transgenic mice. Neurobiol Dis 15:500–509. doi:10.1016/j.nbd.2003.11.020

    PubMed  CAS  Google Scholar 

  124. Pennanen L, Wolfer DP, Nitsch RM, Gotz J (2006) Impaired spatial reference memory and increased exploratory behavior in P301L tau transgenic mice. Genes Brain Behav 5:369–379. doi:10.1111/j.1601-183X.2005.00165.x

    PubMed  CAS  Google Scholar 

  125. Perlmutter LS, Scott SA, Barron E, Chui HC (1992) MHC class II-positive microglia in human brain: association with Alzheimer lesions. J Neurosci Res 33:549–558. doi:10.1002/jnr.490330407

    PubMed  CAS  Google Scholar 

  126. Probst A, Gotz J, Wiederhold KH et al (2000) Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol 99:469–481. doi:10.1007/s004010051148

    PubMed  CAS  Google Scholar 

  127. Ramalho RM, Viana RJ, Castro RE et al (2008) Apoptosis in transgenic mice expressing the P301L mutated form of human tau. Mol Med 14:309–317. doi:10.2119/2007-00133.Ramalho

    PubMed  CAS  Google Scholar 

  128. Ramsden M, Kotilinek L, Forster C et al (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25:10637–10647. doi:10.1523/JNEUROSCI.3279-05.2005

    PubMed  CAS  Google Scholar 

  129. Reynolds CH, Garwood CJ, Wray S et al (2008) Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases. J Biol Chem 283:18177–18186. doi:10.1074/jbc.M709715200

    PubMed  CAS  Google Scholar 

  130. Rohn TT, Vyas V, Hernandez-Estrada T et al (2008) Lack of pathology in a triple transgenic mouse model of Alzheimer’s disease after overexpression of the anti-apoptotic protein Bcl-2. J Neurosci 28:3051–3059. doi:10.1523/JNEUROSCI.5620-07.2008

    PubMed  CAS  Google Scholar 

  131. Rosenmann H, Grigoriadis N, Eldar-Levy H et al (2008) A novel transgenic mouse expressing double mutant tau driven by its natural promoter exhibits tauopathy characteristics. Exp Neurol 212:71–84. doi:10.1016/j.expneurol.2008.03.007

    PubMed  CAS  Google Scholar 

  132. Rossler M, Zarski R, Bohl J, Ohm TG (2002) Stage-dependent and sector-specific neuronal loss in hippocampus during Alzheimer’s disease. Acta Neuropathol 103:363–369. doi:10.1007/s00401-001-0475-7

    PubMed  Google Scholar 

  133. Sadik G, Tanaka T, Kato K et al (2009) Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: implications for the mechanism of tau aggregation. J Neurochem 108:33–43. doi:10.1111/j.1471-4159.2008.05716.x

    PubMed  CAS  Google Scholar 

  134. Sahara N, Lewis J, DeTure M et al (2002) Assembly of tau in transgenic animals expressing P301L tau: alteration of phosphorylation and solubility. J Neurochem 83:1498–1508. doi:10.1046/j.1471-4159.2002.01241.x

    PubMed  CAS  Google Scholar 

  135. Santacruz K, Lewis J, Spires T et al (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481. doi:10.1126/science.1113694

    PubMed  CAS  Google Scholar 

  136. Sasaki A, Kawarabayashi T, Murakami T et al (2008) Microglial activation in brain lesions with tau deposits: comparison of human tauopathies and tau transgenic mice TgTauP301L. Brain Res 1214:159–168. doi:10.1016/j.brainres.2008.02.084

    PubMed  CAS  Google Scholar 

  137. Sengupta A, Kabat J, Novak M et al (1998) Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch Biochem Biophys 357:299–309. doi:10.1006/abbi.1998.0813

    PubMed  CAS  Google Scholar 

  138. Sengupta A, Novak M, Grundke-Iqbal I, Iqbal K (2006) Regulation of phosphorylation of tau by cyclin-dependent kinase 5 and glycogen synthase kinase-3 at substrate level. FEBS Lett 580:5925–5933. doi:10.1016/j.febslet.2006.09.060

    PubMed  CAS  Google Scholar 

  139. Sheffield LG, Marquis JG, Berman NE (2000) Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer’s disease. Neurosci Lett 285:165–168. doi:10.1016/S0304-3940(00)01037-5

    PubMed  CAS  Google Scholar 

  140. Sheng JG, Mrak RE, Griffin WS (1997) Glial-neuronal interactions in Alzheimer disease: progressive association of IL-1alpha + microglia and S100beta + astrocytes with neurofibrillary tangle stages. J Neuropathol Exp Neurol 56:285–290. doi:10.1097/00005072-199703000-00007

    PubMed  CAS  Google Scholar 

  141. Schindowski K, Bretteville A, Leroy K et al (2006) Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. Am J Pathol 169:599–616. doi:10.2353/ajpath.2006.060002

    PubMed  CAS  Google Scholar 

  142. Schindowski K, Belarbi K, Bretteville A, Ando K, Buee L (2008) Neurogenesis and cell cycle-reactivated neuronal death during pathogenic tau aggregation. Genes Brain Behav 7(Suppl 1):92–100

    PubMed  CAS  Google Scholar 

  143. Schneider A, Biernat J, von Bergen M, Mandelkow E, Mandelkow EM (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38:3549–3558. doi:10.1021/bi981874p

    PubMed  CAS  Google Scholar 

  144. Schonheit B, Zarski R, Ohm TG (2004) Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 25:697–711. doi:10.1016/j.neurobiolaging.2003.09.009

    PubMed  Google Scholar 

  145. Schwab C, Steele JC, McGeer PL (1996) Neurofibrillary tangles of Guam parkinson-dementia are associated with reactive microglia and complement proteins. Brain Res 707:196–205. doi:10.1016/0006-8993(95)01257-5

    PubMed  CAS  Google Scholar 

  146. Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494. doi:10.1002/(SICI)1096-9861(19970324)379:4<482::AID-CNE2>3.0.CO;2-Z

    PubMed  CAS  Google Scholar 

  147. Skrabana R, Sevcik J, Novak M (2006) Intrinsically disordered proteins in the neurodegenerative processes: formation of tau protein paired helical filaments and their analysis. Cell Mol Neurobiol 26:1085–1097. doi:10.1007/s10571-006-9083-3

    PubMed  CAS  Google Scholar 

  148. Skrabana R, Skrabanova M, Csokova N, Sevcik J, Novak M (2006) Intrinsically disordered tau protein in Alzheimer’s tangles: a coincidence or a rule? Bratisl Lek Listy (Tlacene Vyd) 107:354–358

    CAS  Google Scholar 

  149. Spires-Jones TL, de Calignon A, Matsui T et al (2008) In vivo imaging reveals dissociation between caspase activation and acute neuronal death in tangle-bearing neurons. J Neurosci 28:862–867. doi:10.1523/JNEUROSCI.3072-08.2008

    PubMed  CAS  Google Scholar 

  150. Spires TL, Orne JD, SantaCruz K et al (2006) Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol 168:1598–1607. doi:10.2353/ajpath.2006.050840

    PubMed  CAS  Google Scholar 

  151. Spittaels K, Van den Haute C, Van Dorpe J et al (1999) Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155:2153–2165

    PubMed  CAS  Google Scholar 

  152. Stadelmann C, Bruck W, Bancher C, Jellinger K, Lassmann H (1998) Alzheimer disease: DNA fragmentation indicates increased neuronal vulnerability, but not apoptosis. J Neuropathol Exp Neurol 57:456–464

    Article  PubMed  CAS  Google Scholar 

  153. Straiko MM, Coolen LM, Zemlan FP, Gudelsky GA (2007) The effect of amphetamine analogs on cleaved microtubule-associated protein-tau formation in the rat brain. Neuroscience 144:223–231. doi:10.1016/j.neuroscience.2006.08.073

    PubMed  CAS  Google Scholar 

  154. Tanemura K, Akagi T, Murayama M et al (2001) Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis 8:1036–1045. doi:10.1006/nbdi.2001.0439

    PubMed  CAS  Google Scholar 

  155. Tanemura K, Murayama M, Akagi T et al (2002) Neurodegeneration with tau accumulation in a transgenic mouse expressing V337M human tau. J Neurosci 22:133–141

    PubMed  CAS  Google Scholar 

  156. Taniguchi T, Doe N, Matsuyama S et al (2005) Transgenic mice expressing mutant (N279K) human tau show mutation dependent cognitive deficits without neurofibrillary tangle formation. FEBS Lett 579:5704–5712. doi:10.1016/j.febslet.2005.01.039

    PubMed  CAS  Google Scholar 

  157. Tatebayashi Y, Miyasaka T, Chui DH et al (2002) Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 99:13896–13901. doi:10.1073/pnas.202205599

    PubMed  CAS  Google Scholar 

  158. Terwel D, Lasrado R, Snauwaert J et al (2005) Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 280:3963–3973. doi:10.1074/jbc.M409876200

    PubMed  CAS  Google Scholar 

  159. Tucholski J, Kuret J, Johnson GV (1999) Tau is modified by tissue transglutaminase in situ: possible functional and metabolic effects of polyamination. J Neurochem 73:1871–1880

    PubMed  CAS  Google Scholar 

  160. Vega IE, Cui L, Propst JA et al (2005) Increase in tau tyrosine phosphorylation correlates with the formation of tau aggregates. Brain Res Mol Brain Res 138:135–144. doi:10.1016/j.molbrainres.2005.04.015

    PubMed  CAS  Google Scholar 

  161. Vega IE, Traverso EE, Ferrer-Acosta Y et al (2008) A novel calcium-binding protein is associated with tau proteins in tauopathy. J Neurochem 106:96–106. doi:10.1111/j.1471-4159.2008.05339.x

    PubMed  CAS  Google Scholar 

  162. Velasco A, Fraser G, Delobel P, et al (2008) Detection of filamentous tau inclusions by the fluorescent Congo red derivative FSB. FEBS Lett 582:901–906. (trans,trans)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy)styrylbenzene. doi:10.1016/j.febslet.2008.02.025

    Google Scholar 

  163. Vereecken TH, Vogels OJ, Nieuwenhuys R (1994) Neuron loss and shrinkage in the amygdala in Alzheimer’s disease. Neurobiol Aging 15:45–54. doi:10.1016/0197-4580(94)90143-0

    PubMed  CAS  Google Scholar 

  164. Vitek MP, Bhattacharya K, Glendening JM et al (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 91:4766–4770. doi:10.1073/pnas.91.11.4766

    PubMed  CAS  Google Scholar 

  165. von Gunten A, Kovari E, Bussiere T et al (2006) Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in Alzheimer’s disease. Neurobiol Aging 27:270–277. doi:10.1016/j.neurobiolaging.2005.02.008

    Google Scholar 

  166. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2:871–875. doi:10.1038/nm0896-871

    PubMed  CAS  Google Scholar 

  167. Wang Y, Loomis PA, Zinkowski RP, Binder LI (1993) A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau. J Cell Biol 121:257–267. doi:10.1083/jcb.121.2.257

    PubMed  CAS  Google Scholar 

  168. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772. doi:10.1016/S0140-6736(94)92338-8

    PubMed  CAS  Google Scholar 

  169. West MJ, Kawas CH, Stewart WF, Rudow GL, Troncoso JC (2004) Hippocampal neurons in pre-clinical Alzheimer’s disease. Neurobiol Aging 25:1205–1212. doi:10.1016/j.neurobiolaging.2003.12.005

    PubMed  CAS  Google Scholar 

  170. Wischik CM, Novak M, Edwards PC et al (1988) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4884–4888. doi:10.1073/pnas.85.13.4884

    PubMed  CAS  Google Scholar 

  171. Wischik CM, Novak M, Thogersen HC et al (1988) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4506–4510. doi:10.1073/pnas.85.12.4506

    PubMed  CAS  Google Scholar 

  172. Yan SD, Chen X, Schmidt AM et al (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA 91:7787–7791. doi:10.1073/pnas.91.16.7787

    PubMed  CAS  Google Scholar 

  173. Yoshiyama Y, Higuchi M, Zhang B et al (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53:337–351. doi:10.1016/j.neuron.2007.01.010

    PubMed  CAS  Google Scholar 

  174. Zehr C, Lewis J, McGowan E et al (2004) Apoptosis in oligodendrocytes is associated with axonal degeneration in P301L tau mice. Neurobiol Dis 15:553–562. doi:10.1016/j.nbd.2003.12.011

    PubMed  CAS  Google Scholar 

  175. Zhang B, Higuchi M, Yoshiyama Y et al (2004) Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci 24:4657–4667. doi:10.1523/JNEUROSCI.0797-04.2004

    PubMed  CAS  Google Scholar 

  176. Zilka N, Filipcik P, Koson P et al (2006) Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett 580:3582–3588. doi:10.1016/j.febslet.2006.05.029

    PubMed  CAS  Google Scholar 

  177. Zilka N, Stozicka Z, Kovac A, et al (2009) Human misfolded truncated tau protein promotes activation of microglia and leukocyte infiltration in the transgenic rat model of tauopathy. J Neuroinflammation (in press)

Download references

Acknowledgments

This work has been supported by research grants from Axon Neurosciences, APVV-0631-07, VEGA 2/0144/08, APVV LPP-0354-06 and LPP-0363-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Novak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zilka, N., Korenova, M. & Novak, M. Misfolded tau protein and disease modifying pathways in transgenic rodent models of human tauopathies. Acta Neuropathol 118, 71–86 (2009). https://doi.org/10.1007/s00401-009-0499-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-009-0499-y

Keywords

Navigation