Skip to main content
Log in

Morphometry of the human substantia nigra in ageing and Parkinson’s disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

To investigate the relation between the loss of substantia nigra (SN) neurons in normal ageing and Parkinson’s disease (PD), we measured the total number and the cell body volume of pigmented (neuromelanin) neurons in the SN. We examined young (n = 7, mean age: 19.9), middle-aged (n = 9, mean age: 50.1), and older controls from the Baltimore Longitudinal Study of Aging (n = 7, mean age: 87.6), as well as PD cases (n = 8, mean age: 74.8). On random-systematically selected paraffin Nissl-stained sections, we used the Optical Fractionator to estimate the total number of neurons on one side of the SN. Using the Nucleator probe, we measured the volume of these neurons. In young and older controls, we also estimated the total number and volume of tyrosine hydroxylase (TH) positive (+) nigral neurons. We observed a significant loss of pigmented (-28.3%, P < 0.01) and TH (+) (−36.2%, P < 0.001) neurons in older controls compared with younger subjects. Analysis of the size distribution of pigmented and TH (+) neurons showed a significant hypertrophy in older controls compared to young controls (P < 0.01). In contrast, in PD we observed a significant atrophy of pigmented neurons compared to all control groups (P < 0.01). These data suggest that neuronal hypertrophy represents a compensatory mechanism within individual SN neurons that allows for normal motor function despite the loss of neurons in normal ageing. Presumably, this compensatory mechanism breaks down or is overwhelmed by the pathological events of PD leading to the onset of the characteristic motor disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aarsland D, Andersen K, Larsen JP, Lolk A, Nielsen H, Kragh-Sorensen P (2001) Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56:730–736

    PubMed  CAS  Google Scholar 

  2. Bannon MJ, Whitty CJ (1997) Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology 48:969–977

    PubMed  CAS  Google Scholar 

  3. Braak E, Sandmann-Keil D, Rub U, Gai WP, de Vos RA, Steur EN, Arai K, Braak H (2001) alpha-synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei. Acta Neuropathol 101:195–201

    PubMed  CAS  Google Scholar 

  4. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  5. Braak H, Braak E, Yilmazer D, de Vos RA, Jansen EN, Bohl J (1996) Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 103:455–490

    Article  PubMed  CAS  Google Scholar 

  6. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  7. Cabello CR, Thune JJ, Pakkenberg H, Pakkenberg B (2002) Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol Appl Neurobiol 28:283–291

    Article  PubMed  CAS  Google Scholar 

  8. Chen EY, Kallwitz E, Leff SE, Cochran EJ, Mufson EJ, Kordower JH, Mandel RJ (2000) Age-related decreases in GTP-cyclohydrolase-I immunoreactive neurons in the monkey and human substantia nigra. J Comp Neurol 426:534–548

    Article  PubMed  CAS  Google Scholar 

  9. Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH (2002) Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J Comp Neurol 450:203–214

    Article  PubMed  CAS  Google Scholar 

  10. Comella CL (2007) REM sleep disorders and parkinsonism. J Neurol 254(Suppl 5):56–60

    Article  Google Scholar 

  11. Cruz-Sanchez FF, Cardozo A, Tolosa E (1995) Neuronal changes in the substantia nigra with aging: a Golgi study. J Neuropathol Exp Neurol 54:74–81

    PubMed  CAS  Google Scholar 

  12. Del Tredici K, Rub U, De Vos RA, Bohl JR, Braak H (2002) Where does parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426

    PubMed  Google Scholar 

  13. Dickson DW (1999) Neuropathologic differentiation of progressive supranuclear palsy and corticobasal degeneration. J Neurol 246(Suppl 2):II6–II15

    Article  PubMed  Google Scholar 

  14. Dickson DW (2001) Alpha-synuclein and the Lewy body disorders. Curr Opin Neurol 14:423–432

    Article  PubMed  CAS  Google Scholar 

  15. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  16. Finch CE (1993) Neuron atrophy during aging: programmed or sporadic? Trends Neurosci 16:104–110

    Article  PubMed  CAS  Google Scholar 

  17. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    PubMed  CAS  Google Scholar 

  18. Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ, Kaufmann H, Klockgether T, Lang AE, Lantos PL, Litvan I, Mathias CJ, Oliver E, Robertson D, Schatz I, Wenning GK (1999) Consensus statement on the diagnosis of multiple system atrophy. J Neurol Sci 163:94–98

    Article  PubMed  CAS  Google Scholar 

  19. Gundersen HJ (1988) The nucleator. J Microsc 151:3–21

    PubMed  CAS  Google Scholar 

  20. Hughes AJ, Daniel SE, Blankson S, Lees AJ (1993) A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol 50:140–148

    PubMed  CAS  Google Scholar 

  21. Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL (1982) A new clinical scale for the staging of dementia. Br J Psychiatry 140:566–572

    PubMed  CAS  Google Scholar 

  22. Iwanaga K, Yamada M, Wakabayashi K, Ikuta F, Takahashi H (1996) A newly discovered age-related synaptic change in the human locus ceruleus: morphometric and ultrastructural studies. Acta Neuropathol 91:337–342

    Article  PubMed  CAS  Google Scholar 

  23. Jellinger KA (2001) The pathology of Parkinson’s disease. Adv Neurol 86:55–72

    PubMed  CAS  Google Scholar 

  24. Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 109:813–836

    Article  PubMed  CAS  Google Scholar 

  25. Jellinger KA (2006) The morphological basis of mental dysfunction in Parkinson’s disease. J Neurol Sci 248:167–172

    Article  PubMed  CAS  Google Scholar 

  26. Kawas C, Gray S, Brookmeyer R, Fozard J, Zonderman A (2000) Age-specific incidence rates of Alzheimer’s disease: the Baltimore Longitudinal Study of Aging. Neurology 54:2072–2077

    PubMed  CAS  Google Scholar 

  27. Kubis N, Faucheux BA, Ransmayr G, Damier P, Duyckaerts C, Henin D, Forette B, Le Charpentier Y, Hauw JJ, Agid Y, Hirsch EC (2000) Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 123(Pt 2):366–373

    Article  PubMed  Google Scholar 

  28. Ma SY, Ciliax BJ, Stebbins G, Jaffar S, Joyce JN, Cochran EJ, Kordower JH, Mash DC, Levey AI, Mufson EJ (1999) Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol 409:25–37

    Article  PubMed  CAS  Google Scholar 

  29. Ma SY, Roytt M, Collan Y, Rinne JO (1999) Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol 25:394–399

    Article  PubMed  CAS  Google Scholar 

  30. Mann DM, Yates PO (1979) The effects of ageing on the pigmented nerve cells of the human locus caeruleous and substantia nigra. Acta Neuropathol 47:93–97

    Article  PubMed  CAS  Google Scholar 

  31. Mann DM, Yates PO, Marcyniuk B (1984) Monoaminergic neurotransmitter systems in presenile Alzheimer’s disease and in senile dementia of Alzheimer type. Clin Neuropathol 3:199–205

    PubMed  CAS  Google Scholar 

  32. McGeer PL, McGeer EG, Suzuki JS (1977) Aging and extrapyramidal function. Arch Neurol 34:33–35

    PubMed  CAS  Google Scholar 

  33. McIlwain DL, Hoke VB (2005) The role of the cytoskeleton in cell body enlargement, increased nuclear eccentricity and chromatolysis in axotomized spinal motor neurons. BMC Neurosci 6:19

    Article  PubMed  Google Scholar 

  34. McKeith IG, Ballard CG, Perry RH, Ince PG, O’Brien JT, Neill D, Lowery K, Jaros E, Barber R, Thompson P, Swann A, Fairbairn AF, Perry EK (2000) Prospective validation of consensus criteria for the diagnosis of dementia with Lewy bodies. Neurology 54:1050–1058

    PubMed  CAS  Google Scholar 

  35. Mikolaenko I, Pletnikova O, Kawas CH, O’Brien R, Resnick SM, Crain B, Troncoso JC (2005) Alpha-synuclein lesions in normal aging, Parkinson disease, and Alzheimer disease: evidence from the Baltimore Longitudinal Study of Aging (BLSA). J Neuropathol Exp Neurol 64:156–162

    PubMed  CAS  Google Scholar 

  36. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G, Berg L (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486

    PubMed  CAS  Google Scholar 

  37. Morris JC (1997) Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr 9(Suppl 1):173–176 (discussion 177–178)

    Article  PubMed  Google Scholar 

  38. Pakkenberg B, Moller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30–33

    Article  PubMed  CAS  Google Scholar 

  39. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  PubMed  CAS  Google Scholar 

  40. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251:205–208

    Article  PubMed  CAS  Google Scholar 

  41. Stark AK, Pakkenberg B (2004) Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 318:81–92

    Article  PubMed  CAS  Google Scholar 

  42. Takeda A, Kikuchi A, Matsuzaki-Kobayashi M, Sugeno N, Itoyama Y (2007) Olfactory dysfunction in Parkinson’s disease. J Neurol 254(Suppl 4):IV2–IV7

    Article  Google Scholar 

  43. Thiessen B, Rajput AH, Laverty W, Desai H (1990) Age, environments, and the number of substantia nigra neurons. Adv Neurol 53:201–206

    PubMed  CAS  Google Scholar 

  44. Tooyama I, McGeer EG, Kawamata T, Kimura H, McGeer PL (1994) Retention of basic fibroblast growth factor immunoreactivity in dopaminergic neurons of the substantia nigra during normal aging in humans contrasts with loss in Parkinson’s disease. Brain Res 656:165–168

    Article  PubMed  CAS  Google Scholar 

  45. van Domburg PHMF, ten Donkelaar HJ (1992) The human substantia nigra and ventral tegmental area: a neuroanatomical study with notes on aging and aging disease. Adv Anat Embryol Cell Biol 121:32–69

    Google Scholar 

  46. West MJ, Gundersen HJ (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296:1–22

    Article  PubMed  CAS  Google Scholar 

  47. West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  PubMed  CAS  Google Scholar 

  48. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772

    Article  PubMed  CAS  Google Scholar 

  49. West MJ, Slomianka L (1998) Total number of neurons in the layers of the human entorhinal cortex. Hippocampus 8:69–82

    Article  PubMed  CAS  Google Scholar 

  50. Yamamoto T, Hirano A (1986) A comparative study of modified Bielschowsky, Bodian and thioflavin S stains on Alzheimer’s neurofibrillary tangles. Neuropathol Appl Neurobiol 12:3–9

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the BLSA participants and staff. Ms. Karen Wall is recognized for editorial assistance and Dr. An Yang for his advice on statistics. This work was supported by the Johns Hopkins University Morris K. Udall Parkinson’s Disease Research Center of Excellence (P50 NS38377) and Alzheimer’s Disease Research Center (P50 AG05146) and by the Intramural Research Program of the National Institute on Aging, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gay Rudow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudow, G., O’Brien, R., Savonenko, A.V. et al. Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol 115, 461–470 (2008). https://doi.org/10.1007/s00401-008-0352-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0352-8

Keywords

Navigation