Skip to main content
Log in

MRT-basierte Katheterablation

Aktueller Stand und Ausblick

MRI-based catheter ablation

Current status and outlook

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Zusammenfassung

Die Fluoroskopie-gestützte Katheterablation hat sich als Standardverfahren zur Behandlung von Patienten mit Herzrhythmusstörungen etabliert. Sie unterliegt jedoch hinsichtlich der Visualisierung von arrhythmogenem Substrat und Ablationsläsionen gewissen Limitationen und geht mit einer Strahlenbelastung einher. Im Rahmen von Studien konnten erste Erfahrungen mit MRT-basierten elektrophysiologischen Untersuchungen und Ablationen gesammelt werden. Die Integration der MRT-Technologie in elektrophysiologische Prozeduren verspricht zahlreiche Vorteile. Die Möglichkeit, bei einer MRT-basierten Katheterablation in einem strahlungsfreien Umfeld operieren zu können, stellt einen wichtigen Aspekt dar. Des Weiteren liefert die MRT wichtige prozedurrelevante Informationen, was die Visualisierung von individuellem arrhythmogenem Substrat betrifft. Um den unmittelbaren und langfristigen Ablationserfolg, insbesondere auch im Kontext von komplexen Herzrhythmusstörungen und strukturellen Herzerkrankungen, zukünftig weiter verbessern zu können, ist die direkte und erfolgreiche Integration der MRT-generierten Erkenntnisse in den Ablationsprozess von eminenter Bedeutung. Die Zukunft der MRT-basierten Katheterablation könnte somit insbesondere in der Behandlung von komplexeren Herzrhythmusstörungen liegen, welche personalisierte Therapiepfade erfordern. Diesbezüglich ist die Datenlage jedoch noch äußerst limitiert. Technische Weiterentwicklungen und größere Studien sind unabdingbar, um weitere wichtige Erkenntnisse über die Durchführbarkeit, Sicherheit und Erfolgsrate der MRT-gestützten invasiven elektrophysiologischen Diagnostik und Therapie im Vergleich zu konventionellen Ablationsmethoden gewinnen zu können.

Abstract

Fluoroscopy-based catheter ablation has established itself as a standard procedure for the treatment of patients with cardiac arrhythmias. However, it is subject to certain limitations with regard to the visualization of arrhythmogenic substrate and ablation lesions and is associated with radiation exposure. Within the framework of studies, initial experience with MRI-based, radiation-free electrophysiological examinations and ablations could be gained. The integration of MRI technology into electrophysiological procedures promises numerous advantages. The ability to operate in a radiation-free environment during MRI-based catheter ablation is significant and promising. Furthermore, MRI provides important procedure-relevant information in terms of visualization of individual arrhythmogenic substrate. In order to further improve immediate and long-term ablation success, especially in the context of complex arrhythmias and structural heart disease, the direct and successful integration of MRI-generated findings into the ablation process is of utmost importance. The future of MRI-based catheter ablation could thus lie in particular in the treatment of more complex cardiac arrhythmias, which require personalized therapy paths. In this respect, however, the data situation is still extremely limited. Further technical developments and larger studies are indispensable in order to gain further important insights into the feasibility, safety and success rate of MRI-based invasive electrophysiological diagnostics and therapy in comparison to conventional ablation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL (2018) 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 72(14):e91–e220

    Article  Google Scholar 

  2. Brachmann J, Lewalter T, Kuck KH, Andresen D, Willems S, Spitzer SG, Straube F, Schumacher B, Eckardt L, Danilovic D, Thomas D, Hochadel M, Senges J (2017) Long-term symptom improvement and patient satisfaction following catheter ablation of supraventricular tachycardia: insights from the German ablation registry. Eur Heart J 38(17):1317–1326

    Article  Google Scholar 

  3. Chubb H, Harrison JL, Weiss S, Krueger S, Koken P, Bloch LØ, Kim WY, Stenzel GS, Wedan SR, Weisz JL, Gill J, Schaeffter T, O’Neill MD, Razavi RS (2017) Development, preclinical validation, and clinical translation of a cardiac magnetic resonance—electrophysiology system with active catheter tracking for ablation of cardiac arrhythmia. JACC Clin Electrophysiol 3(2):89–103

    Article  Google Scholar 

  4. Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E et al (2019) HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace 21:1143–1144

    Article  Google Scholar 

  5. Dinov B, Fiedler L, Schönbauer R, Bollmann A, Rolf S, Piorkowski C, Hindricks G, Arya A (2014) Outcomes in catheter ablation of ventricular tachycardia in dilated nonischemic cardiomyopathy compared with ischemic cardiomyopathy: results from the Prospective Heart Centre of Leipzig VT (HELP-VT) Study. Circulation 129(7):728–736

    Article  Google Scholar 

  6. Elbes D, Magat J, Govari A, Ephrath Y, Vieillot D, Beeckler C, Weerasooriya R, Jais P, Quesson B (2017) Magnetic resonance imaging-compatible circular mapping catheter: an in vivo feasibility and safety study. Europace 19(3):458–464

    PubMed  Google Scholar 

  7. Glikson M, Nielsen JC, Kronborg MB, Michowitz Y, Auricchio A, Barbash IM, Barrabés JA, Boriani G, Braunschweig F, Brignole M, Burri H, Coats AJS, Deharo JC, Delgado V, Diller GP, Israel CW, Keren A, Knops RE, Kotecha D, Leclercq C, Merkely B, Starck C, Thylén I, Tolosana JM, ESC Scientific Document Group (2021) 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: developed by the task force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC) with the special contribution of the European Heart Rhythm Association (EHRA). Europace. https://doi.org/10.1093/europace/euab232

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grothoff M, Piorkowski C, Eitel C, Gaspar T, Lehmkuhl L, Lücke C, Hoffmann J, Hildebrand L, Wedan S, Lloyd T, Sunnarborg D, Schnackenburg B, Hindricks G, Sommer P, Gutberlet M (2014) MR imaging-guided electrophysiological ablation studies in humans with passive catheter tracking: initial results. Radiology 271(3):695–702

    Article  Google Scholar 

  9. Grothoff M, Gutberlet M, Hindricks G, Fleiter C, Schnackenburg B, Weiss S, Krueger S, Piorkowski C, Gaspar T, Wedan S, Lloyd T, Sommer P, Hilbert S (2017) Magnetic resonance imaging guided transatrial electrophysiological studies in swine using active catheter tracking—experience with 14 cases. Eur Radiol 27(5):1954–1962

    Article  Google Scholar 

  10. Guckel D, Schmidt A, Gutleben KJ, Körber B, Fischbach T, Horstkotte D, Sommer P, Nölker G (2020) Pulmonary vein isolation and beyond: predictive value of vagal reactions in second-generation cryoballoon ablation for the outcome of persistent atrial fibrillation. Heart Rhythm 17(4):600–606

    Article  Google Scholar 

  11. Guckel D, Niemann S, Ditzhaus M, Molatta S, Bergau L, Fink T, Sciacca V, El Hamriti M, Imnadze G, Steinhauer P, Braun M, Khalaph M, Nölker G, Sommer P, Sohns C (2021) Long-term efficacy and impact on mortality of remote magnetic navigation guided catheter ablation of ventricular arrhythmias. J Clin Med 10:4695

    Article  Google Scholar 

  12. Hilbert S, Sommer P, Gutberlet M, Gaspar T, Foldyna B, Piorkowski C, Weiss S, Lloyd T, Schnackenburg B, Krueger S, Fleiter C, Paetsch I, Jahnke C, Hindricks G, Grothoff M (2016) Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series. Europace 18(4):572–577

    Article  Google Scholar 

  13. Hilbert S, Jahnke C, Loebe S, Oebel S, Weber A, Spampinato R, Richter S, Doering M, Bollmann A, Sommer P, Hindricks G, Paetsch I (2018) Cardiovascular magnetic resonance imaging in patients with cardiac implantable electronic devices: a device-dependent imaging strategy for improved image quality. Eur Heart J Cardiovasc Imaging 19(9):1051–1061

    Article  Google Scholar 

  14. Hindricks G, Potpara T, Dagres N, Arbelo E, Bax JJ, Blomström-Lundqvist C, Boriani G, Castella M, Dan GA, Dilaveris PE, Fauchier L, Filippatos G, Kalman JM, La Meir M, Lane DA, Lebeau JP, Lettino M, Lip GYH, Pinto FJ, Thomas GN, Valgimigli M, Van Gelder IC, Van Putte BP, Watkins CL, ESC Scientific Document Group. (2021) 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): the task force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42(5):373–498

    Article  Google Scholar 

  15. Lickfett L, Mahesh M, Vasamreddy C, Bradley D, Jayam V, Eldadah Z, Dickfeld T, Kearney D, Dalal D, Lüderitz B, Berger R, Calkins H (2004) Radiation exposure during catheter ablation of atrial fibrillation. Circulation 110(19):3003–3010

    Article  Google Scholar 

  16. Marrouche NF, Greene T, Dean JM, Kholmovski EG, Boer LM, Mansour M, Calkins H, Marchlinski F, Wilber D, Hindricks G, Mahnkopf C, Jais P, Sanders P, Brachmann J, Bax J, Dagher L, Wazni O, Akoum N, DECAAF II Investigators (2021) Efficacy of LGE-MRI-guided fibrosis ablation versus conventional catheter ablation of atrial fibrillation: the DECAAF II trial: study design. J Cardiovasc Electrophysiol 32(4):916–924

    Article  Google Scholar 

  17. Mukherjee RK, Roujol S, Chubb H, Harrison J, Williams S, Whitaker J, O’Neill L, Silberbauer J, Neji R, Schneider R, Pohl T, Lloyd T, O’Neill M, Razavi R (2018) Epicardial electroanatomical mapping, radiofrequency ablation, and lesion imaging in the porcine left ventricle under real-time magnetic resonance imaging guidance-an in vivo feasibility study. Europace 20(FI2):f254–f262

    Article  Google Scholar 

  18. Nazarian S, Kolandaivelu A, Zviman MM, Meininger GR, Kato R, Susil RC, Roguin A, Dickfeld TL, Ashikaga H, Calkins H, Berger RD, Bluemke DA, Lardo AC, Halperin HR (2008) Feasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies. Circulation 118(3):223–229

    Article  Google Scholar 

  19. Paetsch I, Jahnke C, Hilbert S, Krueger S, Weiss S, Smink J, Schnackenburg B, Lloyd T, Hindricks G, Sommer P (2017) Cardiovascular magnetic resonance-guided electrophysiological interventions: radiofrequency ablation of typical atrial flutter. Circ Cardiovasc Imaging 10(1):e5780

    Article  Google Scholar 

  20. Paetsch I, Sommer P, Jahnke C, Hilbert S, Loebe S, Schoene K, Oebel S, Krueger S, Weiss S, Smink J, Lloyd T, Hindricks G (2019) Clinical workflow and applicability of electrophysiological cardiovascular magnetic resonance-guided radiofrequency ablation of isthmus-dependent atrial flutter. Eur Heart J Cardiovasc Imaging 20(2):147–156

    Article  Google Scholar 

  21. Peeters JM, Seppenwoolde JH, Bartels LW, Bakker CJ (2006) Development and testing of passive tracking markers for different field strengths and tracking speeds. Phys Med Biol 51:N127–N137

    Article  CAS  Google Scholar 

  22. Piorkowski C, Grothoff M, Gaspar T, Eitel C, Sommer P, Huo Y, John S, Gutberlet M, Hindricks G (2013) Cavotricuspid isthmus ablation guided by real-time magnetic resonance imaging. Circ Arrhythm Electrophysiol 6(1):e7–e10

    Article  Google Scholar 

  23. Priori SG, Blomström-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, Elliott PM, Fitzsimons D, Hatala R, Hindricks G et al (2015) 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 36:2793–2867

    Article  Google Scholar 

  24. Schmidt EJ, Mallozzi RP, Thiagalingam A, Holmvang G, d’Avila A, Guhde R, Darrow R, Slavin GS, Fung MM, Dando J, Foley L, Dumoulin CL, Reddy VY (2009) Electroanatomic mapping and radiofrequency ablation of porcine left atria and atrioventricular nodes using magnetic resonance catheter tracking. Circ Arrhythm Electrophysiol 2(6):695–704

    Article  Google Scholar 

  25. Siebermair J, Kholmovski EG, Marrouche N (2017) Assessment of left atrial fibrosis by late gadolinium enhancement magnetic resonance imaging: methodology and clinical implications. ACC Clin Electrophysiol 3(8):791–802

    Article  Google Scholar 

  26. Siontis KC, Kim HM, Sharaf Dabbagh G, Latchamsetty R, Stojanovska J, Jongnarangsin K, Morady F, Bogun FM (2017) Association of preprocedural cardiac magnetic resonance imaging with outcomes of ventricular tachycardia ablation in patients with idiopathic dilated cardiomyopathy. Heart Rhythm 14:1487–1493

    Article  Google Scholar 

  27. Sommer P, Grothoff M, Eitel C, Gaspar T, Piorkowski C, Gutberlet M, Hindricks G (2013) Feasibility of real-time magnetic resonance imaging-guided electrophysiology studies in humans. Europace 15(1):101–108

    Article  Google Scholar 

  28. Susil RC, Yeung CJ, Halperin HR, Lardo AC, Atalar E (2002) Multifunctional interventional devices for MRI: a combined electrophysiology/MRI catheter. Magn Reson Med 47:594–600

    Article  Google Scholar 

  29. Unterberg-Buchwald C, Ritter CO, Reupke V, Wilke RN, Stadelmann C, Steinmetz M, Schuster A, Hasenfuß G, Lotz J, Uecker M (2017) Targeted endomyocardial biopsy guided by real-time cardiovascular magnetic resonance. J Cardiovasc Magn Reson 19(1):45

    Article  Google Scholar 

  30. Venneri L, Rossi F, Botto N, Andreassi MG, Salcone N, Emad A, Lazzeri M, Gori C, Vano E, Picano E (2009) Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: insights from the National Research Council’s Biological Effects of Ionizing Radiation VII Report. Am Heart J 157(1):118–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Khalaph.

Ethics declarations

Interessenkonflikt

C. Jahnke, I. Paetsch und P. Sommer erhielten Unterstützung durch einen Forschungs-Grant durch ImriCor. M. Khalaph, D. Guckel, L. Bergau und C. Sohns geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Die Autoren M. Khalaph und D. Guckel teilen sich die Erstautorenschaft.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaph, M., Guckel, D., Bergau, L. et al. MRT-basierte Katheterablation. Herzschr Elektrophys 33, 19–25 (2022). https://doi.org/10.1007/s00399-021-00832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-021-00832-w

Schlüsselwörter

Keywords

Navigation