Skip to main content
Log in

Left bundle branch pacing

Linksschenkelstimulation

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Abstract

Chronic right ventricular (RV) pacing has been associated with significant electrical and mechanical dyssynchrony leading to increased risk for recurrent heart failure hospitalizations and atrial arrhythmias. His bundle pacing (HBP) is an effective alternative to RV pacing as it is physiological and provides synchronized contraction of both ventricles. But there are limitations to HBP, which include lead stability, rise in threshold, early battery depletion and longer learning curve. Huang et al. recently reported a novel technique to directly capture the left bundle branch (LBB) by deep septal pacing. Subsequently, many studies have demonstrated the feasibility, safety and efficacy of left bundle branch pacing (LBBP). This has the potential to overcome the limitations of HBP and provide a safe technique to capture the conduction system in patients with distal His bundle and proximal bundle branch disease. The criteria for LBB capture and the methodology to perform LBBP are discussed in detail in this review. The Medtronic SelectSecure®3830 pacing lead is used along with a fixed-curve C315His® or a deflectable C304His® sheath. LBBP provides safe and low threshold compared to HBP. Left bundle potential should be demonstrable in all patients except in those with infrahisian complete heart block (CHB) and complete left bundle branch block (LBBB), wherein antegrade activation of the left bundle will not occur. LBBP has the potential to be an effective alternative to biventricular pacing or HBP in patients with left ventricular dysfunction, LBBB and recurrent heart failure. Long-term safety and clinical outcomes compared to traditional pacing need to be carefully studied in randomized clinical trials.

Zusammenfassung

Die dauerhafte rechtsventrikuläre (RV) Stimulation ist mit einer signifikanten elektrischen und mechanischen Dyssynchronie assoziiert, die zu einem erhöhten Risiko rezidivierender herzinsuffizienzbedingter Hospitalisationen und atrialer Tachyarrhythmien führt. Die His-Bündel-Stimulation stellt eine effektive Alternative zur RV-Stimulation dar, da sie physiologisch ist und eine synchronisierte Kontraktion beider Ventrikel gewährleistet. Es bestehen jedoch Limitationen der His-Bündel-Stimulation in Bezug auf stabile Elektrodenlage, Reizschwellenanstieg, frühe Batterieerschöpfung und längere Lernkurve bei der Implantation. Kürzlich haben Huang et al. eine neue Technik zur direkten Erregung des linken Schenkels (LS) durch tief septale Stimulation vorgestellt. Nachfolgend haben mehrere Studien die Machbarkeit, Sicherheit und Effektivität der LS-Stimulation bestätigt. Die LS-Stimulation besitzt das Potenzial, die Limitationen der His-Bündel-Stimulation zu überwinden und sich als eine sichere Technik zur Stimulation des Reizleitungssystems bei Patienten mit distaler His-Bündel- oder proximaler Schenkelblockierung zu erweisen. In der vorliegenden Übersicht werden die Kriterien für die LS-Erregung und die Implantationstechnik im Rahmen der LS-Stimulation im Detail diskutiert. Hierbei wird die SelectSecure®-3830-Schrittmacherelektrode zusammen mit einer fixierten C315His®- oder steuerbaren C304His®-Schleuse (alle Produkte von Medtronic) verwendet. Die LS-Stimulation liefert sichere und im Vergleich zur His-Bündel-Stimulation niedrigere Reizschwellen. Ein LS-Potenzial sollte bei allen Patienten sichtbar sein, außer es besteht ein infrahisärer oder ein kompletter LS-Block, bei denen keine antegrade Aktivierung des LS möglich ist. Die LS-Stimulation könnte sich als effektive Alternative zur biventrikulären oder His-Bündel-Stimulation bei Patienten mit linksventrikulärer Dysfunktion, LS-Block und rezidivierender Herzinsuffizienz erweisen. Langzeitsicherheit und klinisches Outcome müssen noch in randomisierten klinischen Studien mit der herkömmlichen Stimulation verglichen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tops LF, Schalij MJ, Bax JJ (2009) The effects of right ventricular apical pacing on ventricular function and dyssynchrony implications for therapy. J Am Coll Cardiol 54:764–776

    Article  PubMed  Google Scholar 

  2. Wilkoff BL, Cook JR, Epstein AE et al (2002) Dual chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 288:3115–3123

    Article  PubMed  Google Scholar 

  3. Vassallo JA, Cassidy DM, Miller JM, Buxton AE, Marchlinski FE, Josephson ME (1986) Left ventricular endocardial activation during right ventricular pacing: effect of underlying heart disease. J Am Coll Cardiol 7:1228–1233

    Article  CAS  PubMed  Google Scholar 

  4. Olshansky B, Day JD, Lerew DR, Brown S, Stolen KQ (2007) Eliminating right ventricular pacing may not be best for patients requiring implantable cardioverter-defibrillators. Heart Rhythm 4:886–891

    Article  PubMed  Google Scholar 

  5. Udo EO, van Hemel NM, Zuithoff NP, Doevendans PA, Moons KG (2015) Risk of heart failure- and cardiac death gradually increases with more right ventricular pacing. Int J Cardiol 185:95–100

    Article  PubMed  Google Scholar 

  6. Zografos TA, Siontis KC, Jastrzebski M et al (2015) Apical vs. non-apical right ventricular pacing in cardiac resynchronization therapy: a meta-analysis. Europace 17:1259–1266

    Article  PubMed  Google Scholar 

  7. Shimony A, Eisenberg MJ, Filion KB et al (2012) Beneficial effects of right ventricular non-apical vs. apical pacing: a systematic review and metaanalysis of randomized-controlled trials. Europace 14:81–91

    Article  PubMed  Google Scholar 

  8. Vijayaraman P, Chung MK, Dandamudi G et al (2018) His bundle pacing. J Am Coll Cardiol 72:927–947

    Article  PubMed  Google Scholar 

  9. Vijayaraman P, Bordachar P, Ellenbogen KA (2017) The continued search for physiological pacing: where are we now? J Am Coll Cardiol 69:3099–3114

    Article  PubMed  Google Scholar 

  10. Deshmukh P, Casavant DA, Romanyshyn M et al (2000) Permanent, direct His-bundle pacing: a novel approach to cardiac pacing in patients with normal His-Purkinje activation. Circulation 101:869–877

    Article  CAS  PubMed  Google Scholar 

  11. Abdelrahman M, Subzposh FA, Beer D et al (2018) Clinical outcomes of His bundle pacing compared to right ventricular pacing. J Am Coll Cardiol 71:2319–2330

    Article  PubMed  Google Scholar 

  12. Huang W, Su L, Wu S et al (2017) Benefits of permanent His bundle pacing combined with atrioventricularnode ablation in atrial fibrillation patients with heart failure with both preserved and reduced left ventricular ejection fraction. J Am Heart Assoc 6:e5309

    PubMed  PubMed Central  Google Scholar 

  13. Huang W, Su L, Wu S et al (2019) Long-term outcomes of His bundle pacing in patients with heart failure with left bundle branch block. Heart 105:137–143

    Article  PubMed  Google Scholar 

  14. Lustgarten DL, Crespo EM, Arkhipova-Jenkins I et al (2015) His-bundle pacing versus biventricular pacing in cardiac resynchronization. Heart Rhythm 12(7):1548–1557

    Article  PubMed  Google Scholar 

  15. Subzposh FA, Vijayaraman P (2018) Long-term results of His bundle pacing. Card Electrophysiol Clin 10:537–542

    Article  PubMed  Google Scholar 

  16. Barba-Pichardo R, Morina-Vazquez P, Fermandez-Gomes JM et al (2010) Permanent His-bundle pacing: seeking physiological ventricular pacing. Europace 12:527–533

    Article  PubMed  Google Scholar 

  17. Zanon F, Ellenbogen KA, Dandamudi G et al (2018) Permanent His-bundle pacing: a systematic literature review and meta-analysis. Europace 20:1819–1826

    Article  PubMed  Google Scholar 

  18. Tung S, Lemaitre J (2015) His bundle pacing: in pursuit of the “sweet spot”. Pacing Clin Electrophysiol 38:537–539

    Article  PubMed  Google Scholar 

  19. Sharma PS, Dandamudi G, Herweg B, Wilson D, Singh R, Naperkowski A et al (2018) Permanent His-bundle pacing as an alternative to biventricular pacing for cardiac resynchronization therapy: a multicenter experience. Heart Rhythm 15:413–420

    Article  PubMed  Google Scholar 

  20. Huang W, Su L, Wu S et al (2017) A novel pacing strategy with low and stable output: pacing the left bundle branch immediately beyond the conduction block. Can J Cardiol 33:1736.e1–1736.e3

    Article  Google Scholar 

  21. Wu S, Su L, Wang S, Vijayaraman P, Ellenbogen KA, Huang W (2019) Peri-left bundle branch pacing in a patient with right ventricular pacing-induced cardiomyopathy and atrioventricular infra-Hisian block. Europace 21(7):1038

    Article  PubMed  Google Scholar 

  22. Tawara S (1906) Das Reizleitungssystem des Saügetierherzens. Gustav Fischer, Jena, pp 135–138 (149)

    Google Scholar 

  23. Rosenbaum MB, Elizari MV, Lázzari JO (1970) The hemiblocks. New concepts of Intraventricular conduction based on human, anatomical and clinical studies. Tampa Tracings, Oldsmar, p 269

    Google Scholar 

  24. Anderson RH, Beker E, Tranun-Jensen J, Janse MJ (1981) Anatomico-electrophysiological correlations in the conduction system—a review. Br Heart J 45:67–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen X, Wu S, Su L, Su Y, Huang W (2019) The characteristics of the electrocardiogram and the intracardiac electrogram in left bundle branch pacing. J Cardiovasc Electrophysiol 30:1096–1101

    PubMed  Google Scholar 

  26. Chen K, Li Y, Dai Y et al (2019) Comparison of electrocardiogram characteristics and pacing parameters between left bundle branch pacing and right ventricular pacing in patients receiving pacemaker therapy. Europace 24:673–680

    Article  Google Scholar 

  27. Li Y, Chen K, Dai Y et al (2019) Left bundle branch pacing for symptomatic bradycardia: implant success rate, safety and pacing characteristics. Heart Rhythm 16(12):1758–1765

  28. Li X, Li H, Ma W et al (2019) Permanent left bundle branch area pacing for atrioventricular block: feasibility, safety and acute effect. Heart Rhythm 16(12):1766–1773

  29. Su L, Xu T, Vijayaraman P, Sharma PS, Huang W et al (2020) Electrophysiological characteristics and clinical values of left bundle branch current of injury in left bundle branch pacing. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.14377

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen K, Li Y (2019) How to implant left bundle branch pacing lead in route clinical practice. J Cardiovasc Electrophysiol 30:2569–2577

    Article  PubMed  Google Scholar 

  31. Zhou X, Knisley S, Smith WM et al (1998) Spatial changes in the transmembrane potential during extracellular electric stimulation. Circ Res 83:1003–1014

    Article  CAS  PubMed  Google Scholar 

  32. Huang W, Chen X, Su L et al (2019) A beginner’s guide to permanent left bundle branch pacing. Heart Rhythm 16(12):1791–1796

  33. Jastrzebski M, Moskal P, Bednarek A et al (2020) Programmed deep septal stimulation—a novel maneuver for the diagnosis of left bundle branch capture during permanent pacing. J Cardiovasc Electrophysiol. https://doi.org/10.1111/jce.14352

    Article  PubMed  Google Scholar 

  34. Vijayaraman P, Subzposh FA, Naperkowski A et al (2019) Prospective evaluation of feasibility, electrophysiologic and echocardiographic characteristics of left bundle branch area pacing. Heart Rhythm 16:1774–1782

    Article  PubMed  Google Scholar 

  35. Zhang J, Wang Z, Cheng L et al (2019) Immediate clinical outcomes of left bundle branch area pacing vs conventional right ventricular pacing. Clin Cardiol 42:768–773

    PubMed  PubMed Central  Google Scholar 

  36. Hou X, Qian Z, Wang Y et al (2019) Feasibility and cardiac synchrony of permanent left bundle branch pacing through the interventricular septum. Europace 1;21(11):1694–1702

    Article  Google Scholar 

  37. Zhang W, Huang J et al (2019) Cardiac resynchronization therapy by left bundle branch area pacing in patients with heart failure and left bundle branch block. Heart Rhythm 16:1783–1790

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pugazhendhi Vijayaraman MD, FHRS.

Ethics declarations

Conflict of interest

P. Vijayaraman: Speaker, Consultant, Fellowship support, Research (Medtronic), Consultant (Boston Scientific, Abbott, Biotronik), patent pending for His delivery tool. S. Sundaram declares that he has no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Caption Electronic Supplementary Material

Video 1: Advancement of the lead deep in the septum in left anterior oblique view

Video 2: Angiography demonstrating the depth of the lead in the ventricular septum

Video 3: Uncoiling the excessive lead loop

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundaram, S., Vijayaraman, P. Left bundle branch pacing. Herzschr Elektrophys 31, 124–134 (2020). https://doi.org/10.1007/s00399-020-00694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-020-00694-8

Keywords

Schlüsselwörter

Navigation