Skip to main content
Log in

Buckling and its effect on the confined flow of a model capsule suspension

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheology of confined flowing suspensions, such as blood, depends upon the dynamics of the components, which can be particularly rich when they are elastic capsules. Using boundary integral methods, we simulate a two-dimensional model channel through which flows a dense suspension of fluid-filled capsules. A parameter of principal interest is the equilibrium membrane perimeter, parameterized by ξ o, which ranges from round capsules with ξ o=1.0 to ξ o=3.0 capsules with a dog-bone-like equilibrium shape. It is shown that the minimum effective viscosity occurs for ξ o≈1.6, which forms a biconcave equilibrium shape, similar to a red blood cell. The rheological behavior changes significantly over this range; transitions are linked to specific changes in the capsule dynamics. Most noteworthy is an abrupt change in behavior for ξ o≈2.0, which correlates with the onset of capsule buckling. The buckled capsules have a more varied orientation and make significant rotational (rotlet) contributions to the capsule–capsule interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alonso C, Pries AR, Gaehtgens P (1993) Time-dependent rheological behavior of blood at low shear in narrow vertical tubes. Am J Physiol Heart Circ Physiol 265:553–561

    Google Scholar 

  • Alonso C, Pries AR, Kiesslich O, Lerche D, Gaehtgens P (1995) Transient rheological behavior of blood in low-shear tube flow: velocity profile and effective viscosity. Am J Physiol Heart Circ Physiol 268:25–32

    Google Scholar 

  • Anderson R, Cassell M, Mullinax GL, Chaplin Jr. H (1963) Effect of normal cells on viscosity of sickle-cell blood. Arch Intern Med 111:286–294

    Article  Google Scholar 

  • Barbee JH, Cokelet GR (1971) Prediction of blood flow in tubes with diameters as small as 29p. Microvasc Res 3:17–21

    Article  Google Scholar 

  • Bishop JJ, Popel AS, Intaglietta M, Johnson PC (2001) Rheological effects of red blood cell aggregation in the venuous network: a review of recent studies. Biorheology 38:263–274

    Google Scholar 

  • Brezavscek AH, Rauzi M, Leptin M, Ziherl P (2012) A model of epithelial invagination driven by collective mechanics of identical cells. Biophysics 103:1069–1077

    Google Scholar 

  • Bronzino JD (2000) The biomedical engineering handbook. IEEE Press/CRC Press, Boca Raton

    Google Scholar 

  • Brust M, Aouane O, Thiébaud M, Flormann D, Verdier C, Kaestner L, Laschke MW, Selmi H, Benyoussef A, Podgorski T, Coupier G, Misbah C, Wagner C (2014) The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Sci Rep:4

  • Bugliarello G, Sevilla J (1970) Velocity distribution and other characteristics of steady and pulsatiles blood flow in fine glass. Biorheology 7(2):85–107

    Google Scholar 

  • Bushnell D (1981) Buckling of shells—pitfall for designers. AIAA J. 19(9):1183–1226

    Article  Google Scholar 

  • Calle LM, Li WN, Buhrow JW, Perusich SA, Jolley ST, Gibson TL, Williams MK (2012) Elongated microcapsules and their formation. US Patent App. 13/354,576

  • Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theoret Biol 26:61–81

    Article  Google Scholar 

  • Cantat I, Misbah C (1999) Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys Rev Lett 83(4):880–883

    Article  Google Scholar 

  • Chabanel A, Reinhart W, Chien S (1987) Increased resistance to membrane deformation of shape-transformed human red blood cells. Blood 69:739–743

    Google Scholar 

  • Chang TM (2010) Blood replacement with nanobiotechnologically engineered hemoglobin and hemoglobin nanocapsules. Wiley Intersci Rev Nanomed Nanobiotechnol 2:418–430

    Article  Google Scholar 

  • Clausen JR, Reasor Jr. DA, Aidun CK (2011) The rheology and microstructure of concentrated non-colloidal suspensions of deformable capsules. J Fluid Mech 685:202–234

    Article  Google Scholar 

  • Cokelet GR (1972) The rheology of human blood. Prentice-Hall

  • Cokelet GR, Goldsmith HL (1991) Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates. Circ Res 68:1–17

    Article  Google Scholar 

  • Da Costa L, Galimand J, Fenneteau O, Mohandas N (2013) Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. Blood Rev 27(4):167–178

    Article  Google Scholar 

  • Dey NS, Majumdar S, Rao MEB (2008) Multiparticulate drug delivery systems for controlled release. Trop J Pharm Res 7(3):1067– 1075

    Article  Google Scholar 

  • Distenfass L (1968) Internal viscosity of the red cell and a blood viscosity equation. Nature 219:956–958

    Article  Google Scholar 

  • Donbrow M (1991) Microcapsules and nanoparticles in medicine and pharmacy. CRC Press

  • d’Onofrio G, Zini G (2014) Morphology of blood disorders. Wiley

  • Emmel VE (1917) A study of the erythrocytes in a case of severe anemia with elongated and sickle-shaped red blood corpuscles. Archives of Internal Medicine, University of Illinois College of Medicine 20:586–598

    Article  Google Scholar 

  • Fahraeus R, Lindqvist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568

    Google Scholar 

  • Fedosov DA, Dao M, Karniadakis GE, Suresh S (2014) Computational biorheology of human blood flow in health and disease. Ann Biomed Eng 42(2):368–387

    Article  Google Scholar 

  • Firrell JC, Lipowsky HH (1989) Leukocyte margination and deformation in mesenteric venules of ram. Am J Physiol Heart Circ Physiol 225(6):1667–1674

    Google Scholar 

  • Freund JB (2007) Leukocyte margination in a model microvessel. Phys Fluids 19(023301)

  • Freund JB (2014) Numerical simulations of flowing blood cells. Annu Rev Fluid Mech 46:67–95

    Article  Google Scholar 

  • Freund JB, Orescanin MM (2011) Cellular flow in a small blood vessel. J Fluid Mech 671:466–490

    Article  Google Scholar 

  • Freund JB, Zhao H (2010) Hydrodynamics of Capsules and Biological Cells, chapter A fast high-resolution boundary integral method for multiple interacting blood cells. Chapman and Hall/CRC, Boca Raton, pp 71–111

    Google Scholar 

  • Ghigliotti G, Biben T, Misbah C (2010) Rheology of a dilute two-dimensional suspension of vesicles. J Fluid Mech 653:489– 518

    Article  Google Scholar 

  • Ghosh A, Sinha S, Dharmadhikari JA, Roy S, Dharmadhikari AK, Samuel J, Sharma S, Mathur D (2006) Euler buckling-induced folding and rotation of red blood cells in an optical trap. Phys Biol 3:67–73

    Article  Google Scholar 

  • Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Neut 50:213–224

    Article  Google Scholar 

  • Guazzelli E, Morris JF (2012) A physical introduction to suspension dynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press

  • Hasimoto H (1959) On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J Fluid Mech 5(2):317–328

    Article  Google Scholar 

  • Isfahani AHG (2008) A 2d stokes suspension solver with application to red blood cell phenomenology. Master’s thesis, University of Illinois at Urbana-Champaign

  • Jan KM, Chien S (1973) Role of surface electric charge in red blood cell interactions. J Gen Physiol 61 (638)

  • Jenkins JT (1977) Static equilibrium configurations of a model red blood cell. J Math Biol 4:149–169

    Article  Google Scholar 

  • Kim S, Karrila SJ (1991) Microhydrodynamics: principles and selected applications. Butterworth-Heinemann, Boston

    Google Scholar 

  • Knoche S, Kierfeld J (2011) Buckling of spherical capsules. Phys Rev E 84(046608)

  • Kozlovskaya V, Alexander JF, Wang Y, Kuncewicz T, Liu X, Godin B, Kharlampieva E (2014) Internalization of red blood cell-mimicking hydrogel capsules with ph-triggered shape responses. ACS Nano 8(6):5725–5737

    Article  Google Scholar 

  • Kumar A, Henriquez Rivera RG, Graham MD (2014) Flow-induced segregation in confined multicomponent suspensions: effects of particle size and rigidity. J Fluid Mech 738:423–462

    Article  Google Scholar 

  • Lancaster ER, Calladine CR, Palmer SC (2000) Paradoxical buckling behavior of a thin cylindrical shell under axial compression. Int J Mech Sci 42:843–865

    Article  Google Scholar 

  • Lei H, Fedosov DA, Caswell B, Karniadakis GE (2013) Blood flow in small tubes: quantifying the transition to the non-continuum regime. J Fluid Mech 722:214–239

    Article  Google Scholar 

  • Li X, Vlahovska PM, Kamiadakis GE (2013) Continuum- and particle-based modeling of shapes and dybamics of red blood cells in health and disease. Soft Matter 9:28–37

    Article  Google Scholar 

  • Majeti NV, Kumar R (2000) Nano and microparticles as controlled delivery devices. J Pharm Sci 3 (2):234–258

    Google Scholar 

  • Martini P, Pierach A, Schreyer E (1930) Die stromung des blutes in engen gefassen. eine abweichung vom poiseuille’schen gesetz. Dtsch Arch KZin Med 169:212–222

    Google Scholar 

  • McWhirter JL, Noguchi H, Gompper G (2009) Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc Natl Acad Sci 106(15):6039–6043

    Article  Google Scholar 

  • Metsi E (2000) Large scale simulations of bidisperse emulsions and foams. PhD thesis, University of Illinois at Urbana-Champaign

  • Paret N, Trachsel A, Berthier DL, Herrmann A (2015) Controlled release of encapsulated bioactive volatiles by rupture of the capsule wall through the light-induced generation of a gas. Chem Int Ed 54(7):2275–2279

    Article  Google Scholar 

  • Peyratout CS, Dahne L (2004) Taylor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43:3762–3783

    Article  Google Scholar 

  • Pop F (2011) Chemical stabilization of oils rich in long-chain polyunsaturated fatty acids during storage. Food Sci Technol Int 17(2):111–117

    Article  Google Scholar 

  • Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge University Press

  • Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291

    Article  Google Scholar 

  • Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol:263

  • Raghunathan Y, Amsel L, Hinsvark O, Bryant W (1981) Sustained-release drug delivery system I: coated ion-exchange resin system for phenylpropanolamine and other drugs. J Pharm Sci 70:379–384

    Article  Google Scholar 

  • Rahimian A, Veerapaneni SK, Biros G (2010) Dynamic simulation of locally inextensible vesicles suspended in an arbitrary two-dimensional domain, a boundary integral method. J Comp Phys 229:6466–6484

    Article  Google Scholar 

  • Reinke W, Gaehtgens P, Johnson PC (1987) Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am J Physiol Heart Circ Physiol 253:540–547

    Google Scholar 

  • Reinke W, Johnson PC, Gaehtgens P (1986) Effect of shear rate variation on apparent viscosity of human blood in tubes of 29-94 μm. Circ Res 59:124–132

    Article  Google Scholar 

  • Henriquez Rivera RG, Sinha K, Graham MD (2015) Margination regimes and drainage transition in confinded multicomponent suspensions. Phys Rev Lett:114

  • Sankar DS, Lee U (2008) Two-fluid Herchel-Bilkey model for blood flow in catheterized arteries. J Mech Sci Tech 22(5):1008– 1018

    Article  Google Scholar 

  • Sharan M, Popel AS (2001) A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38(5-6):415–428

    Google Scholar 

  • Shiga T, Maeda N, Kon K (1990) Erythrocyte rheology. Oncology/Hematology 10:9–48

    Article  Google Scholar 

  • Simchon S, Jan K, Chien S (1987) Influence of reduced red cell deformability on regional blood flow. Am J Physiol Heart Circ Physiol 253(22):898–902

    Google Scholar 

  • Skalak R, Ozkaya N, Skalak TC (1989) Biofluid mechanics. Annu Rev Fluid Mech 21:167–204

    Article  Google Scholar 

  • Smith JE, Mohandas N, Clark MR, Greenquist AC, Shohet SB (1980) Deformability and spectrin properties in three types of elongated red cells. Am J Hematol 8:1–13

    Article  Google Scholar 

  • Srivastava VP (2007) A theoretical model for blood flow in small vessels. Int J App App Math 2(1):51–65

    Google Scholar 

  • Staben ME, Zinchenko AZ, Davis RH (2003) Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys Fluids 15:1711

    Article  Google Scholar 

  • Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(2):2217–2262

    Article  Google Scholar 

  • Wang Y, Bansal V, Zelikin AN, Caruso F (2008) Templated synthesis of single-compoent polymer capsules and their application in drug delivery. Nano Lett 8(6):1741–1745

    Article  Google Scholar 

  • Weinbaum S, Ganatos P (1990) Numerical multipole and boundary integral equation techniques in Stokes flow. Annu Rev Fluid Mech 22:275–316

    Article  Google Scholar 

  • Whitmore RL (1968) Rheology of the circulation. Pergamon, Oxford

    Google Scholar 

  • Yamaguchi S, Yamakawa T, Niimi H (1992) Cell-free plasma layer in cerebral microvessels. Biorheology 29:251– 260

    Google Scholar 

  • Zhao H, Isfahani AHG, Olson L, Freund JB (2010) A spectral boundary integral method for micro-circulatory cellular flows. J Comp Phys 229:3726–3744

    Article  Google Scholar 

  • Zhao H, Shaqfeh ESG (2011) Shear-induced platelet margination in a microchannel. Phys Rev E 83(6)

  • Zhou H, Pozrikidis C (1995) Deformation of liquid capsules with incompressible deformation of liquid capsules with incompressible interfaces in simple shear flow. J Fluid Mech 283:175–200

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Foundation under Grant No. CBET 13-36972.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan B. Freund.

Additional information

This paper belongs to the special issue on the “Rheology of blood cells, capsules and vesicles”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryngelson, S.H., Freund, J.B. Buckling and its effect on the confined flow of a model capsule suspension. Rheol Acta 55, 451–464 (2016). https://doi.org/10.1007/s00397-015-0900-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0900-9

Keywords

Navigation