Skip to main content
Log in

Microstructure and magnetorheology of graphite-based MR elastomers

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This study focuses on the magnetorheology of graphite-based magnetorheological elastomers (Gr MREs). By introducing graphite to conventional MREs, the Gr MREs with various graphite weight fractions are fabricated. Both steady-state and dynamic tests were conducted to study rheological properties of the samples. For dynamic tests, the effects of magnetic field, strain amplitude and frequency on both storage modulus and loss modulus were measured. The influence of graphite weight fraction on mechanical performances of these samples was summarized. Also, the microstructures of isotropic and anisotropic Gr MREs were observed. In anisotropic MREs, the graphite powders disperse in matrix randomly. The graphite particles lead to an increment of initial mechanical properties and a decrement of the MR effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bica I (2009) Influence of the transverse magnetic field intensity upon the electric resistance of the magnetorheological elastomer containing graphite microparticles. Mater Lett 63(26):2230–2232

    Article  CAS  Google Scholar 

  • Bica I (2010) Influence of the magnetic field on the electric conductivity of magnetorheological elastomers. J Ind Eng Chem 16(3):359–363

    Article  CAS  Google Scholar 

  • Chen L, Gong XL, Li WH (2007) Microstructure and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater Struc 16(6):2645–2650

    Article  Google Scholar 

  • Davis LC (1999) Model of magnetorheological elastomers. J Appl Phys 85(6):3348–3351

    Article  CAS  Google Scholar 

  • De Buyl F (2001) Silicone sealants and structural adhesives. Int J Adhes Adhes 21:411–422

    Article  Google Scholar 

  • Demchuk SA, Kuzmin VA (2002) Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation. J Eng Phys Thermophys 75(2):396–400

    Article  CAS  Google Scholar 

  • Deng HX, Gong XL, Wang LH (2006) Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Mater Struc 15(5):N111-N116

    Article  Google Scholar 

  • Fang FF, Choi HJ, Jhon MS (2009) Magnetorheology of soft magnetic carbonyl iron suspension with single-walled carbon nanotube additive and its yield stress scaling function. Colloids Surf A 351:46–51

    Article  CAS  Google Scholar 

  • Ginder JM, Clark SM, Schlotter WF, Nichols ME (2002) Magnetostrictive phenomena in magnetorheological elastomers. Int J Mod Phys B 16(17&18):2412–2418

    Article  CAS  Google Scholar 

  • Gong XL, Zhang XZ, Zhang PQ (2005) Fabrication and characterization of isotropic magnetorheological elastomers. Polym Test 24(5):669–676

    Article  CAS  Google Scholar 

  • Kim YK, Koo JH, Kim KS, Kim SH (2011) Suppressing harmonic vibrations of a miniature cryogenic cooler using an adaptive tunable vibration absorber based on MR elastomers. Rev Sci Instrum 82:035103

    Article  Google Scholar 

  • Leblanc JL (2002) Rubber-filler interactions and rheological properties in filled compounds. Prog Polym Sci 27(4):627–687

    Article  CAS  Google Scholar 

  • Li WH, Zhang XZ (2010) A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers. Smart Mater Struct 19(3):035002

    Article  Google Scholar 

  • Li WH, Du H, Chen G, Yeso SH, Guo NQ (2002) Nonlinear rheological behavior of MR fluids: step strain experiments. Smart Mater Struct 11:209–217

    Article  Google Scholar 

  • Li WH, Du H, Chen G, Yeo SH, Guo NQ (2003) Nonlinear viscoelastic properties of MR fluids under large-amplitude oscillatory shear. Rheol Acta 42:280–286

    CAS  Google Scholar 

  • Li WH, Kostidis K, Zhang XZ, Zhou Y (2009) Development of a force sensor working with MR Elastomers. In: 2009 Ieee/Asme International Conference on Advanced Intelligent Mechatronics, vols 1-3. ISBN: 978-1-4244-2853-3, pp 233–238

  • Li WH, Zhou Y, Tian TF (2010) Viscoelastic properties of MR elastomers under harmonic loading. Rheol Acta 49:733–740

    Article  CAS  Google Scholar 

  • Lokander M, Stenberg B (2003) Performance of isotropic magnetorheological rubber materials. Polym Test 22(3):245–251

    Article  CAS  Google Scholar 

  • Ni ZC, Gong XL, Li JF, Chen L (2009) Study on a dynamic stiffness-tuning absorber with squeeze-strain enhanced magnetorheological elastomer. J Intell Mater Syst Struct 20(10):1195–1202

    Article  Google Scholar 

  • Park BJ, Song KH, Choi HJ (2009) Magnetic carbonyl iron naaoparticle based magnetorheological suspension and its characteristics. Mater Lett 63:1350–1352

    Article  CAS  Google Scholar 

  • Shiga T, Okada A, Kurauchi T (1995) Magnetroviscoelastic behaviour of composite gels. J Appl Polym Sci 58:787–792

    Article  CAS  Google Scholar 

  • Xu ZB, Gong XL, Liao GJ, Chen XM (2010) An active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. J Intell Mater Syst Struct 21(10):1039–1047

    Article  Google Scholar 

  • Zhang XZ, Li WH (2009) Adaptive tuned dynamic vibration absorbers working with MR elastomers. Smart Struct Syst 5(5):517–529

    Google Scholar 

  • Zhang XZ, Peng SL, Wen WJ, Li WH (2008) Analysis and fabrication of patterned magnetorheological elastomers. Smart Mater Struct 17(4):045001

    Article  Google Scholar 

  • Zhang W, Gong XL, Jiang WQ, Fan YC (2010) Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber. Smart Mater Struct 19:085008

    Article  Google Scholar 

  • Zou H, Zhang LQ, Tian M, Wu SZ, Zhao SH (2009) Study on the structure and properties of conductive silicone rubber filled with nickel-coated graphite. J Appl Polym Sci 115(5):2710–2717

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by University of Wollongong through a UIC grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, T.F., Li, W.H., Alici, G. et al. Microstructure and magnetorheology of graphite-based MR elastomers. Rheol Acta 50, 825–836 (2011). https://doi.org/10.1007/s00397-011-0567-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-011-0567-9

Keywords