Skip to main content
Log in

Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Poly (lactic acid) is an industrially mature, bio-sourced and biodegradable polymer. However, current applications of this eco-friendly material are limited as a result of its brittleness and its poorly melt properties. One of the keys to extend its processing window is to melt strengthen the native material. This paper considers the chain extension as a valuable solution for reaching such an objective. An additive based on epoxy-functionalized PLA was employed during reactive extrusion. The reaction times as a function of chain extender ratios were determined by monitoring the melt pressure during recirculating micro-extrusions. Once residence times were optimized, reactive extrusion experiments were performed on a twin screw extruder. Size exclusion chromatography provided information about the molecular weight distributions (MWD) of the modified PLAs and revealed the creation of a high molecular weight shoulder. The rheological experiments highlighted the enhancement of the melt properties brought about by the chain extension. Shear rheology revealed some enlarged and bimodal relaxation time spectra for the extended materials which are in accordance with the MWD analysis. Such a modification directly amplified the shear sensitivity of modified PLAs. Regarding the rheological temperature sensitivity, it was found to be decreased when the chain extender content is raised as shown from the Arrhenius viscosity fit. The reduction of the polar interactions from neat to highly chain-extended PLAs is here proposed to explain this surprising result. Chain extension was also found to impact on the elongational melt properties where strain hardening occurred for modified PLAs. Investigation of the chain extension architecture was made from the rheological data and revealed a long-chain branched topology for the modified PLAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Al-Hadithi TSR, Barnes HA, Walters K (1992) The relationship between the linear (oscillatory) and nonlinear (steady-state) flow properties of a series of polymer and colloidal systems. Colloid Polym Sci 270(1):40–46

    Article  CAS  Google Scholar 

  • Baratian S, Hall ES, Lin JS, Xu R, Runt J (2001) Crystallization and solid-state structure of random polylactide copolymers: poly(l-lactide-co-d-lactide)s. Macromolecules 34(14):4857–4864

    Article  CAS  Google Scholar 

  • Barroso VC, Maia JM (2005) Influence of long-chain branching on the rheological behavior of polyethylene in shear and extensional flow. Polym Eng Sci 45(7):984–997

    Article  CAS  Google Scholar 

  • Bikiaris DN, Karayannidis GP (1996) Chain extension of polyesters PET and PBT with two new diimidodiepoxides. II. J Polym Sci, A, Polym Chem 34(7):1337–1342

    Article  CAS  Google Scholar 

  • Campbell JD, Debling JA, Deyoung DJ, Giannakitsas I, Dean RSDD, Teymour F, Villalobos MA (2000) Process for producing polymers by free radical polymerization and condensation reaction, and apparatus and products related thereto. S. C. Johnson, Sturtevant

  • Christopher GR, César AG-F, Srivatsan S (2004) Extent of branching from linear viscoelasticity of long-chain-branched polymers. J Polym Sci, B, Polym Phys 42(9):1671–1684

    Article  Google Scholar 

  • Cogswell FN (1972) Converging flow of polymer melts in extrusion dies. Polym Eng Sci 12(1):64–73

    Article  CAS  Google Scholar 

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28(118):619–622

    Article  CAS  Google Scholar 

  • Dorgan JR, Joshua SW (1999) Melt rheology of poly(lactic acid): entanglement and chain architecture effects. J Rheol 43(5):1141–1155

    Article  CAS  Google Scholar 

  • Dorgan JR, Lehermeier H, Mang M (2000) Thermal and rheological properties of commercial-grade poly(lactic acid)s. J Polym Environ 8(1):1–9

    Article  Google Scholar 

  • Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  CAS  Google Scholar 

  • Fleury G, Schlatter G, Muller R (2004) Non linear rheology for long-chain branching characterization, comparison of two methodologies: fourier transform rheology and relaxation. Rheol Acta 44(2):174–187

    Article  CAS  Google Scholar 

  • Graessley W (1975) The entanglement concept in polymer rheology. Adv Polym Sci 18:1–179

    Google Scholar 

  • Gruber PR, Hartmann MH, Kolstad JJ, Witzke DR, Brosch AL (1996) Method of crosslinking PLA. PCT 94/08 508

  • Han CD, Jhon MS (1986) Correlations of the first normal stress difference with shear stress and of the storage modulus with loss modulus for homopolymers. J Appl Polym Sci 32(3):3809–3840

    Article  Google Scholar 

  • Haralabakopoulos AA, Tsiourvas D, Paleos CM (1999) Chain extension of poly(ethylene terephthalate) by reactive blending using diepoxides. J Appl Polym Sci 71(13):2121–2127

    Article  CAS  Google Scholar 

  • Henry EW, Chiu TH, Nyilas E, Brushart TM, Dikkes P, Sidman RL (1985) Nerve regeneration through biodegradable polyester tubes. Exp Neurol 90(3):652–676

    Article  CAS  Google Scholar 

  • Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32(1):65–73

    Article  CAS  Google Scholar 

  • Hsieh TT, Tiu C, Simon GP (2001) Melt rheology of aliphatic hyperbranched polyesters with various molecular weights. Polymer 42(5):1931–1939

    Article  CAS  Google Scholar 

  • Incarnato L, Scarfato P, Di Maio L, Acierno D (2000) Structure and rheology of recycled PET modified by reactive extrusion. Polymer 41(18):6825–6831

    Article  CAS  Google Scholar 

  • Japon S, Boogh L, Leterrier Y, Månson JAE (2000) Reactive processing of poly(ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer 41(15):5809–5818

    Article  CAS  Google Scholar 

  • Kim S, Dealy JM (2002a) Gross melt fracture of polyethylene. I: a criterion based on tensile stress. Polym Eng Sci 42(3):482–494

    Article  CAS  Google Scholar 

  • Kim S, Dealy JM (2002b) Gross melt fracture of polyethylene. II: effects of molecular structure. Polym Eng Sci 42(3):495–503

    Article  CAS  Google Scholar 

  • Labrecque LV, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66(8):1507–1513

    Article  CAS  Google Scholar 

  • Lamnawar K, Maazouz A (2006) Rheological study of multilayer functionalized polymers: characterization of interdiffusion and reaction at polymer/polymer interface. Rheol Acta 45(4):411–424

    Article  CAS  Google Scholar 

  • Lamnawar K, Baudoin A, Maazouz A (2010) Interfacial reaction at the polymer/polymer interface in multilayer systems probed by linear viscoelasticity coupled to FTIR and NMR measurements. Eur Polym J 46(7):1604–1622

    Article  CAS  Google Scholar 

  • Lehermeier HJ, Dorgan JR (2001) Melt rheology of poly(lactic acid): consequences of blending chain architectures. Polym Eng Sci 41(12):2172–2184

    Article  CAS  Google Scholar 

  • Lipinsky ES, Sinclair RG (1986) Is lactic acid a commodity chemical? Chem Eng Prog 82:26–32

    CAS  Google Scholar 

  • Liu C, Li C, Chen P, He J, Fan Q (2004) Influence of long-chain branching on linear viscoelastic flow properties and dielectric relaxation of polycarbonates. Polymer 45(8):2803–2812

    Article  CAS  Google Scholar 

  • Ljungberg N, Wesslén B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Appl Polym Sci 86(5):1227–1234

    Article  CAS  Google Scholar 

  • Ljungberg N, Wesslén B (2003) Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer 44(25):7679–7688

    Article  CAS  Google Scholar 

  • Ljungberg N, Wesslen B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6(3):1789–1796

    Article  CAS  Google Scholar 

  • Lopez Arraiza A, Sarasua JR, Verdu J, Colin X (2007) Rheological behavior and modeling of thermal degradation of poly(e-caprolactone) and poly(L-Lactide). Polym Process XXII 5:389–394

    Google Scholar 

  • Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152

    Article  CAS  Google Scholar 

  • Martin O, Avérous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  CAS  Google Scholar 

  • Mc Kee MG, Unal S, Wilkes GL, Long TE (2005) Branched polyesters: recent advances in synthesis and performance. Prog Polym Sci 30(5):507–539

    Article  CAS  Google Scholar 

  • Mead D (1994) Numerical interconversion of linear viscoelastic material functions. J Rheol 38(6):1797

    Article  CAS  Google Scholar 

  • Mihai M, Huneault MA, Favis BD (2010) Rheology and extrusion foaming of chain-branched poly(lactic acid). Polym Eng Sci 50(3):629–642

    Article  CAS  Google Scholar 

  • Müller M, Seidel U, Stadler R (1995) Influence of hydrogen bonding on the viscoelastic properties of thermoreversible networks: analysis of the local complex dynamics. Polymer 36(16):3143–3150

    Article  Google Scholar 

  • Munari A, Pezzin G, Pilati F, Manaresi P (1989) Rheological characterization of highly branched poly(ethyleneterephthalate). Rheol Acta 28(1):25–29

    Article  CAS  Google Scholar 

  • Muñoz-Escalona A, Lafuente P, Vega JF, Santamaría A (1999) Rheology of metallocene-catalyzed monomodal and bimodal polyethylenes. Polym Eng Sci 39(11):2292–2303

    Article  Google Scholar 

  • Nam GJ, Yoo JH, Lee JW (2005) Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances. J Appl Polym Sci 96(5):1793–1800

    Article  CAS  Google Scholar 

  • Nguyen QT, Japon S, Luciani A, Leterrier Y, Månson JAE (2001) Molecular characterization and rheological properties of modified poly(ethylene terephthalate) obtained by reactive extrusion. Polym Eng Sci 41(8):1299–1309

    Article  Google Scholar 

  • Palade LL, Lehermeier HJ, Dorgan JR (2001) Melt rheology of high L-content poly(lactic acid). Macromolecules 34:1384–1390

    Article  CAS  Google Scholar 

  • Park HE, Dealy J, Münstedt H (2006) Influence of long-chain branching on time-pressure and time-temperature shift factors for polystyrene and polyethylene. Rheol Acta 46:153–159

    Article  Google Scholar 

  • Pilla S, Kim SG, Auer GK, Gong S, Park CB (2009) Microcellular extrusion-foaming of polylactide with chain-extender. Polym Eng Sci 49(8):1653–1660

    Article  CAS  Google Scholar 

  • Randall JR, Cink K, Smith J (2006) Branched polylactic acid polymers and methodof preparing the same

  • Savvas GH (2000) Long chain branching and polydispersity effects on the rheological properties of polyethylenes. Polym Eng Sci 40(11):2279–2287

    Article  Google Scholar 

  • Schulze JS, Lodge TP, Macosko CW, Hepperle J, Münstedt H, Bastian H, Ferri D, Groves DJ, Kim YH, Lyon M, Schweizer T, Virkler T, Wassner E, Zoetelief W (2001) A comparison of extensional viscosity measurements from various RME rheometers. Rheol Acta 40(5):457–466

    Article  CAS  Google Scholar 

  • Seyed HT, Pierre JC, Abdellah A (2010) Rheological properties of blends of linear and long-chain branched polypropylenes. Polym Eng Sci 50(1):191–199

    Article  Google Scholar 

  • Stadler F, Kaschta J, Münstedt H, Becker F, Buback M (2009) Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene. Rheol Acta 48(5):479–490

    Article  CAS  Google Scholar 

  • Tanaka Y, Bauer RS (1988) Epoxy resins—chemistry and technology. CRC, New York

    Google Scholar 

  • Trinkle S, Walter P, Friedrich C (2002) Van Gurp-Palmen Plot II—classification of long-chain branched polymers by their topology. Rheol Acta 41(1):103–113

    Article  CAS  Google Scholar 

  • Tuominen J, Kylmä J, Seppälä J (2002) Chain extending of lactic acid oligomers. 2. Increase of molecular weight with 1,6-hexamethylene diisocyanate and 2,2-bis(2-oxazoline). Polymer 43(1):3–10

    Article  CAS  Google Scholar 

  • Vert M, Schwarch G, Coudane J (1995) Present and Future of PLA Polymers. J Macromol Sci, Part A 32(4):787–796

    Article  Google Scholar 

  • Villalobos MA, Awojulu A, Greeley T, Turco G, Deeter G (2006) Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy 31:3227–3234

    Article  CAS  Google Scholar 

  • Wehrenberg RH (1981) Lactic acid polymers: strong, degradable thermoplastics. Mater Eng 94(3):63–66

    CAS  Google Scholar 

  • Wood-Adams P, Costeux Sp (2001) Thermorheological behavior of polyethylene: effects of microstructure and long-chain branching. Macromolecules 34(18):6281–6290

    Article  CAS  Google Scholar 

  • Wool RP (2005) Properties of triglyceride-based thermosets. Bio-based polymers and composites. Academic, Burlington, pp 202–255

    Google Scholar 

  • Yingwei D, Salvatore I, Ernesto Di M, Luigi N (2005) Reactively modified poly(lactic acid): properties and foam processing. Macromol Mater Eng 290(11):1083–1090

    Article  Google Scholar 

  • Yolles S (1978) Time-release depo for anticancer drugs: release of drug covalently bonded to polymers. J Parenter Drug Assoc 32(4):188

    CAS  Google Scholar 

  • Yolles S, Leaffe T, Ward L, Boettner F (1976) Controlled release of biologically active drugs. B Parenteral Drug Assoc 30(6):306–312

    CAS  Google Scholar 

  • Zhou ZF, Huang GQ, Xu WB, Ren FM (2007) Chain extension and branching of poly(L-lactic acid) produced by reaction with a DGEBA-based epoxy resin. Express Polym Lett 1(11):734–739

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would thank Pr. Jean-Charles MAJESTE from our laboratory (Universté Jean Monnet–St Etienne (France)) for the extensional experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Maazouz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corre, YM., Duchet, J., Reignier, J. et al. Melt strengthening of poly (lactic acid) through reactive extrusion with epoxy-functionalized chains. Rheol Acta 50, 613–629 (2011). https://doi.org/10.1007/s00397-011-0538-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-011-0538-1

Keywords

Navigation