Skip to main content
Log in

Gelation behavior of polysaccharide-based interpenetrating polymer network (IPN) hydrogels

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We report the preparation and rheological characterization of interpenetrating polymer network (IPN) hydrogels made from alginate and hydrophobically modified ethyl hydroxyl ethyl cellulose (HMEHEC). To our knowledge, there have been no studies of the gelation behavior of IPNs. We found that the rheology of these systems can be easily tuned, with the elastic modulus of the IPN strongly dependent on the relative ratio of HMEHEC to alginate. The sol–gel transition of these systems was found to satisfy the Winter–Chambon criterion for gelation at various crosslinker densities. From the power law relationship of the dynamic moduli (G ~G ~ω n), the exponent n appears to be dependent on both the crosslinker density and relative amount of two polymers. The value of n was found to be ~0.5 for all samples for stoichiometric amounts of crosslinker. The effect of molecular weight of HMEHEC on the gel point and viscoelastic exponent has also been reported. Alginate seems to dominate the kinetics of the process but the effect of high molecular weight HMEHEC on the gel point, especially at lower proportion was also evident.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aamer KA, Sardinha H, Bhatia SR, Tew GN (2004) Rheological studies of PLLA-PEO-PLLA triblock copolymer hydrogels. Biomaterials 25:1087–1093

    Article  CAS  Google Scholar 

  • Agrawal SK, Sanabria-DeLong N, Coburn JM, Tew GN, Bhatia SR (2006) Novel drug release profiles from micellar solutions of PLA-PEO-PLA triblock copolymers. J Control Release 112:64–71

    Article  CAS  Google Scholar 

  • Augst AD, Kong HJ, Mooney DJ (2006) Alginate hydrogels as biomaterials. Macromol Biosci 6:623–633

    Article  CAS  Google Scholar 

  • Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, Kane RS (2009) The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30:4695–4699

    Article  CAS  Google Scholar 

  • Bhatia SR, Khattak SF, Roberts SC (2005) Polyelectrolytes for cell encapsulation. Curr Opin Colloid Interface Sci 10:45–51

    Article  CAS  Google Scholar 

  • Bhattarai N, Li ZS, Edmondson D, Zhang MQ (2006) Alginate-based nanofibrous scaffolds: structural, mechanical, and biological properties. Adv Mater 18:1463–1467

    Article  CAS  Google Scholar 

  • Caron G, Gaillard P, Carrupt PA, Testa B (1997) Lipophililicity behavior of model and medicinal compounds containing a sulfide, sulfoxide or sulfone moiety. Helv Chim Acta 80:449–462

    Article  CAS  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a cross-linking PDMS with imbalanced stoichiometry. J Rheol 31:683–697

    Article  CAS  Google Scholar 

  • Daoud M (2000) Viscoelasticity near the sol-gel transition. Macromolecules 33:3019–3022

    Article  CAS  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  • de Moura MR, Aouada FA, Guilherme MR, Radovanovic E, Rubira AF, Muniz EC (2006) Thermo-sensitive IPN hydrogels composed of PNIPAAm gels supported on alginate-Ca2+ with LCST tailored close to human body temperature. Polym Test 25:961–969

    Article  Google Scholar 

  • De Vos P, De Haan B, Van Schilfgaarde R (1997) Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 18:273

    Article  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  Google Scholar 

  • Draget KI, Ostgaard K, Smidsrod O (1990) Homogeneous alginate gels—a technical approach. Carbohydr Polym 14:159–178

    Article  CAS  Google Scholar 

  • Draget KI, Simensen MK, Onsoyen E, Smidsrod O (1993) Gel strength of ca-limited alginate gels made in situ. Hydrobiogia 260–261:563–569

    Article  Google Scholar 

  • Erkamp RQ, Wiggins P, Skovoroda AR, Emelianov SY, O’Donnell M (1998) Measuring the elastic modulus of small tissue samples. Ultrason Imag 20:17–28

    CAS  Google Scholar 

  • Ju HK, Kim SY, Lee YM (2001) pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly (N-isopropylacrylamide). Polymer 42:6851–6857

    Article  CAS  Google Scholar 

  • Karlberg M, Thuresson K, Piculell L, Lindman B (2004) Mixed solutions of hydrophobically modified graft and block copolymers. Colloids Surf, A Physicochem Eng Asp 236:159–164

    Article  CAS  Google Scholar 

  • Karlson L, Joabsson F, Thuresson K (2000) Phase behavior and rheology in water and in model paint formulations thickened with HM-EHEC: influence of the chemical structure and the distribution of hydrophobic tails. Carbohydr Polym 41:25–35

    Article  CAS  Google Scholar 

  • Karlson L, Thuresson K, Lindman B (2002) A rheological investigation of the complex formation between hydrophobically modified ethyl (hydroxy ethyl) cellulose and cyclodextrin. Carbohydr Polym 50:219–226

    Article  CAS  Google Scholar 

  • Klock G, Pfeffermann A, Ryser C, Grohn P, Kuttler B, Hahn HJ, Zimmermann U (1997) Biocompatibility of mannuronic acid-rich alginates. Biomaterials 18:707–713

    Article  CAS  Google Scholar 

  • Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  Google Scholar 

  • Lee SB, Park EK, Lim YM, Cho SK, Kim SY, Lee YM, Nho YC (2006) Preparation of alginate/poly(N-isopropylacrylamide) semi-interpenetrating and fully interpenetrating polymer network hydrogels with gamma-ray irradiation and their swelling behaviors. J Appl Polym Sci 100:4439–4446

    Article  CAS  Google Scholar 

  • Liu XX, Qian LY, Shu T, Tong Z (2003) Rheology characterization of sol-gel transition in aqueous alginate solutions induced by calcium cations through in situ release. Polymer 44:407–412

    Article  CAS  Google Scholar 

  • Martin JE, Adolf D, Wilcoxon JP (1988) Viscoelasticity of near-Critical Gels. Phys Rev Lett 61:2620–2623

    Article  CAS  Google Scholar 

  • Mason TG, Lacasse MD, Grest GS, Levine D, Bibette J, Weitz DA (1997) Osmotic pressure and viscoelastic shear moduli of concentrated emulsions. Phys Rev E 56:3150–3166

    Article  CAS  Google Scholar 

  • Mason TG, Weitz DA (1995) Linear viscoelasticity of colloidal hard-sphere suspensions near the glass-transition. Phys Rev Lett 75:2770–2773

    Article  CAS  Google Scholar 

  • McNaught AD, Wilkinson A (1997) IUPAC: compendium of chemical technology, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Moresi M, Bruno M, Parente E (2004) Viscoelastic properties of microbial alginate gels by oscillatory dynamic tests. J Food Eng 64:179–186

    Article  Google Scholar 

  • Mu C, Sakai S, Ijima H, Kawakami K (2010) Preparation of cell-enclosing microcapsules through photopolymerization of methacrylated alginate solution triggered by irradiation with visible light. J Biosci Bioeng 109:618–621

    Article  CAS  Google Scholar 

  • Muthukumar M (1989) Screening effect on viscoelasticity near the gel point. Macromolecules 22:4656–4658

    Article  CAS  Google Scholar 

  • Norisuye T, Shibayama M, Nomura S (1998) Time-resolved light scattering study on the gelation process of poly(N-isopropyl acrylamide). Polymer 39:2769–2775

    Article  CAS  Google Scholar 

  • Nystrom B, Kjoniksen AL, Lindman B (1996) Effects of temperature, surfactant, and salt on the rheological behavior in semidilute aqueous systems of a nonionic cellulose ether. Langmuir 12:3233–3240

    Article  Google Scholar 

  • Park HG, Chae MY (2004) Novel type of alginate gel-based adsorbents for heavy metal removal. J Chem Technol Biotechnol 79:1080–1083

    Article  CAS  Google Scholar 

  • Park TG, Choi HK (1998) Thermally induced core-shell type hydrogel beads having interpenetrating polymer network (IPN) structure. Macromol Rapid Commun 19:167–172

    Article  CAS  Google Scholar 

  • Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    Article  CAS  Google Scholar 

  • Rubinstein M, Colby R (2006) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  • Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–4438

    Article  CAS  Google Scholar 

  • Scanlan JC, Winter HH (1991a) Composition dependence of the viscoelasticity of end-linked Poly(Dimethylsiloxane) at the gel point. Macromolecules 24:47–54

    Article  CAS  Google Scholar 

  • Scanlan JC, Winter HH (1991b) The evolution of viscoelasticity near the gel point of end-linking Poly(Dimethylsiloxane)S. Makromol Chem Macromol Symp 45:11–21

    CAS  Google Scholar 

  • Schiessel H, Blumen A (1995) Mesoscopic pictures of the sol–gel transition—ladder models and fractal networks. Macromolecules 28:4013–4019

    Article  CAS  Google Scholar 

  • Silioc C, Maleki A, Zhu KZ, Kjoniksen AL, Nystrom B (2007) Effect of hydrophobic modification on rheological and swelling features during chemical gelation of aqueous polysaccharides. Biomacromolecules 8:719–728

    Article  CAS  Google Scholar 

  • Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58(1):738–759

    Article  CAS  Google Scholar 

  • Tsianou M, Thuresson K, Piculell L (2001) Phase separation in aqueous mixtures of hydrophobically modified cellulose derivatives with their nonmodified analogues. Colloid Polym Sci 279:340–347

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  • Yu QL, Zhou JB, Fung YC (1993) Neutral axis location in bending and youngs modulus of different layers of arterial-wall. Am J Physiol 265:H52–H60

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the NSF-funded Center for Hierarchical Manufacturing (CMMI-0531171), use of central facilities of the NSF-funded MRSEC on Polymers (DMR-0213695), a NSF IGERT Fellowship for JCW (DGE-0654128) and an NIH Chemistry-Biology Interface Traineeship for WLS (National Research Service Award T32 GM08515).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surita R. Bhatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, S., White, J.C., Stoppel, W.L. et al. Gelation behavior of polysaccharide-based interpenetrating polymer network (IPN) hydrogels. Rheol Acta 50, 39–52 (2011). https://doi.org/10.1007/s00397-010-0499-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0499-9

Keywords

Navigation