Skip to main content
Log in

Uniaxial elongational behavior of poly(vinyl chloride) physical gel

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A poly(vinyl chloride) \((\mbox{PVC,}\;{\rm M}_{\rm w} =102\times 10^3)\) di-octyl phthalate (DOP) gel with PVC content of 20 wt.% was prepared by a solvent evaporation method. The dynamic viscoelsticity and elongational viscosity of the PVC/DOP gel were measured at various temperatures. The gel exhibited a typical sol–gel transition behavior with elevating temperature. The critical gel temperature (Tgel) characterized with a power–law relationship between the storage and loss moduli, G and G, and frequency ω, \({G}^\prime={G}^{\prime\prime}{\rm /tan}\;\left( {{n}\pi {\rm /2}} \right)\propto \omega ^{n}\), was observed to be 152°C. The elongational viscosity of the gel was measured below the Tgel. The gel exhibited strong strain hardening. Elongational viscosity against strain plot was independent of strain rate. This finding is different from the elongational viscosity behavior of linear polymer solutions and melts. The stress–strain relations were expressed by the neo-Hookean model at high temperature (135°C) near the Tgel. However, the stress–strain curves were deviated from the neo-Hookean model at smaller strain with decreasing temperature. These results indicated that this physical gel behaves as the neo-Hookean model at low cross-linking point, and is deviated from the neo-Hookean model with increasing of the PVC crystallites worked as the cross-linking junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe S, Yamaguchi M (2001) Study on the foaming of crosslinked polyethylene. J Appl Polym Sci 79:2146–2155

    Article  CAS  Google Scholar 

  • Aoki Y (2001) A preparation method of thermoreversible poly(vinyl chloride) gels. Macromolecules 34:3500–3502

    Article  CAS  ADS  Google Scholar 

  • Aoki Y, Li L, Uchida H, Kakiuchi M, Watanabe H (1998a) Rheological images of poly(vinyl chloride) gels. 5. Effect of molecular weight distribution. Macromolecules 31:7472–7478

    Article  CAS  ADS  Google Scholar 

  • Aoki Y, Li L, Kakiuchi M (1998b) Rheological images of poly(vinyl chloride) gels. 6. Effect of temperature. Macromolecules 32:8117–8123

    Article  ADS  Google Scholar 

  • Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31:683–697

    Article  CAS  ADS  Google Scholar 

  • Dorrestijn A, te Nijenhuis K (1990) Viscoelastic behavior during gelation of various molar-mass polyvinylchloride solutions and polymerization temperatures. Colloid Polym Sci 268:895–900

    Article  CAS  Google Scholar 

  • Dorrestijn A, Keizers AEM, te Nijenhuis K (1981) Correlation between viscoelastic behaviour and small angle X-ray scattering of thermoreversible polyvinyl chloride gels. Polymer 22:305–312

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Gottlieb M, Macosko CW, Lepsch TL (1981) Stress–strain behavior of randomly crosslinked polydimethylsiloxane networks. J Polym Sci Polym Phys Ed 19:1603–1617

    Article  CAS  Google Scholar 

  • Guenet J (1992) Thermoreversible gelation of polymers and biopolymers. Academic, London

    Google Scholar 

  • Kakiuchi M, Aoki Y, Watanabe H, Osaki K (2001a) Viscoelastic properties of poly(vinyl chloride) gels: Universality of gel elasticity. Macromolecules 34:2987–2991

    Article  CAS  ADS  Google Scholar 

  • Kakiuchi M, Aoki Y, Watanabe H, Osaki K (2001b) Viscoelastic properties of poly(vinyl chloride) gels: Effect of plasticizer type. Nihon Reoroji Gakkaishi (J Soc Rheol, Jpn) 29:53–59

    Article  CAS  Google Scholar 

  • Li L, Aoki Y (1997) Rheological images of poly(vinyl chloride) gels. 1. The dependence of sol–gel transition on concentration. Macromolecules 30:7873–7841

    Google Scholar 

  • Li L, Aoki Y (1998) Rheological images of poly(vinyl chloride) gels. 3. Elasticity evolution and the scaling law beyond the sol–gel transition. Macromolecules 31:740–745

    Article  CAS  ADS  Google Scholar 

  • Li L, Uchida H, Aoki Y, Yao M-L (1997) Rheological images of poly(vinyl chloride) gels. 2. Divergence of viscosity and the scaling law before the sol–gel transition. Macromolecules 30:7842–7848

    Article  CAS  ADS  Google Scholar 

  • Macosko CW (1994) Rheology. Wiley, New York

    Google Scholar 

  • Ogura K, Takahashi M (2003) Nihon Reoroji Gakkaishi (J Soc Rheol, Jpn) 31:85–89

    Article  CAS  Google Scholar 

  • Sato K, Aoki Y, Sugimoto M, Koyama K (2006) Rheological properties of some thermoplastic elastomers. Seikei-Kakou 18:421–426

    Article  CAS  Google Scholar 

  • Sugimoto M, Hida H, Taniguchi T, Koyama K, Aoki Y (2007) Rheological properties of poly(vinyl chloride)/plasticizer systems-relation between sol–gel transition and elongational viscosity. Rheol Acta 46:957–964

    Article  CAS  Google Scholar 

  • te Nijenhuis K (1997) Thermoreversible networks. Adv Polym Sci 130:1–267

    Article  Google Scholar 

  • te Nijenhuis K, Dijkstra H (1975) Investigation of the aging process of a polyvinyl chloride gel by the measurement of its dynamic moduli. Rheol Acta 14:71–84

    Article  Google Scholar 

  • te Nijenhuis K, Winter HH (1989) Mechanical properties at the gel point of a crystallizing poly(vinyl chloride) solution. Macromolecules 22:411–414

    Article  ADS  Google Scholar 

  • Tosaka M (2007) Strain-induced crystallization of crosslinked natural rubber as revealed by X-ray diffraction using synchrotron radiation. Polym J 39:1220–1220

    Article  Google Scholar 

  • Venkataraman SK, Winter HH (1990) Finite shear strain behavior of a crosslinking polydimethylsiloxane near its gel point. Rheol Acta 29:423–432

    Article  CAS  Google Scholar 

  • Watanabe H, Sato T, Osaki K, Aoki Y, Li L, Kakiuchi M, Yao M-L (1998) Rheological images of poly(vinyl chloride) gels. 4. Nonlinear behavior in a critical gel state. Macromolecules 31:4198–4204

    Article  CAS  ADS  Google Scholar 

  • Watanabe H, Osaki K, Kakiuchi M, Aoki Y (2001) Viscoelastic properties of poly(vinyl chloride) sols. Macromolecules 34:666–670

    Article  CAS  ADS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking PDMS at the gel point. J Rheol 30:367–382

    Article  CAS  ADS  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near liquid–solid transition. Adv Polym Sci 134:165–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Aoki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, Y., Hirayama, K., Kikuchi, K. et al. Uniaxial elongational behavior of poly(vinyl chloride) physical gel. Rheol Acta 49, 1071–1076 (2010). https://doi.org/10.1007/s00397-010-0483-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0483-4

Keywords

Navigation