Skip to main content
Log in

Micron-scale origin of the shear-induced structure in Laponite–poly(ethylene oxide) dispersions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We study the transient response to simple shear of aqueous dispersions of Laponite clay particles and poly(ethylene oxide) at concentrations for which shear induces structure in the form of a network of polymer–clay bonds. We examine the effects of shear on the structure at the micrometer length scale. Bulk rheometric measurements give the material’s response to step changes in shear rate. We find that a critical value of the shear rate separates two regions with different rheological behaviors. Static small-angle light scattering shows a corresponding qualitative change in the anisotropy of the dispersion under shear at the micron scale. We interpret our results in terms of the effects of shear on the interactions between clay particles and polymer chains and on the aggregation mechanisms in the dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Avery RG, Ramsay JDF (1986) Colloidal properties of synthetic hectorite clay dispersions: II. Light and small angle neutron scattering. J Colloid Interface Sci 109:448–454

    Article  CAS  Google Scholar 

  • Baghdadi HA, Sardinha H, Bhatia SR (2005) Rheology and gelation kinetics in laponite dispersions containing poly(ethylene oxide). J Polym Sci B 43:233–240

    Article  CAS  Google Scholar 

  • Bhatia S, Barker J, Mourchid A (2003) Scattering of disklike particle suspensions: evidence for repulsive interactions and large length scale structure from static light scattering and ultra-small-angle neutron scattering. Langmuir 19:532–535

    Article  CAS  Google Scholar 

  • Bonn D, Tanaka H, Wegdam G, Kellay H, Meunier J (1999a) Aging of a colloidal “Wigner” glass. Europhys Lett 45:52–57

    Article  CAS  Google Scholar 

  • Bonn D, Kellay H, Tanaka H, Wegdam G, Meunier J (1999b) Laponite: what is the difference between a gel and a glass? Langmuir 15:7534–7536

    Article  CAS  Google Scholar 

  • Cappelaere E, Berret JF, Decruppe JP, Cressely R, Lindner P (1997) Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: evidence of a shear-induced phase transition. Phys Rev E 56:1869–1878

    Article  CAS  Google Scholar 

  • Cocard S, Tassin J-F, Nicolai T (2000) Dynamical mechanical properties of gelling colloidal disks. J Rheol 44:585–594

    Article  CAS  Google Scholar 

  • DeGroot JV Jr., Macosko CW, Kume T, Hashimoto T (1994) Flow-induced anisotropic SALS in silica-filled PDMS liquids. J Colloid Interface Sci 166:404–413

    Article  CAS  Google Scholar 

  • Devanand K, Selser JC (1991) Asymptotic behavior and long-range interactions in aqueous solutions of poly(ethylene oxide). Macromolecules 24:5943–5947

    Article  CAS  Google Scholar 

  • Dorget M (1995) Propriétés rhéologiques des composés silice/ silicone, Ph.D. thesis, Institute National Polytechnique Grenoble, France.

  • Gabriel JCP, Sanchez C, Davidson P (1996) Observation of nematic liquid–crystal textures in aqueous gels of smectite clays. J Phys Chem 100:11139–11143

    Article  CAS  Google Scholar 

  • Hashimoto T, Fujioka K (1991) Shear-enhanced concentration fluctuations in polymer solutions as observed by flow light scattering. J Phys Soc Jpn 60:356–359

    Article  CAS  Google Scholar 

  • Hashimoto T, Kume T (1992) “Butterfly” light scattering pattern in shear-enhanced concentration fluctuations in polymer solutions and anomaly at high shear rates. J Phys Soc Jpn 61:1839–1843

    Article  CAS  Google Scholar 

  • Krishnamoorti R, Yurekli K (2001) Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid Interface Sci 6:464–470

    Article  CAS  Google Scholar 

  • Krishnan K, Almdal K, Burghardt WR, Lodge TP, Bates FS (2001) Shear-induced nano-macro structural transition in a polymeric bicontinuous microemulsion. Phys Rev Lett 87:098301-1-4

    Article  CAS  Google Scholar 

  • Kroon M, Wegdam GH, Sprik R (1996) Dynamic light scattering studies on the sol-gel transition of a suspension of anisotropic colloidal particles. Phys Rev E 54:6541–6550

    Article  CAS  Google Scholar 

  • Kroon M, Vos WL, Wegdam GH (1998) Structure and formation of a gel of colloidal disks. Phys Rev E 57:1962–1970

    Article  CAS  Google Scholar 

  • Lal J, Auvray L (2000) Interaction of polymer with clays. J Appl Crystallogr 33:673–676

    Article  CAS  Google Scholar 

  • Laporte Industries (1990) Laponite technical bulletin L104/90/A, 1

  • Lemaire BJ, Panine P, Gabriel JCP, Davidson P (2002) The measurement by SAXS of the nematic order parameter of laponite gels. Europhys Lett 59:55–61

    Article  CAS  Google Scholar 

  • Levitz P, Lécolier E, Mourchid A, Delville A, Lyonnard S (2000) Liquid-solid transition of Laponite suspensions at very low ionic strength: long-range electrostatic stabilisation of anisotropic colloids. Europhys Lett 49:672–677

    Article  CAS  Google Scholar 

  • Lin-Gibson S, Schmidt G, Kim H, Han CC, Hobbie EK (2003) Shear-induced mesostructure in nonoplatelet-polymer networks. J Chem Phys 119:8080–8083

    Article  CAS  Google Scholar 

  • Lin-Gibson S, Kim H, Schmidt G, Han CC, and Hobbie EK (2004) Shear-induced structure in polymer-clay nanocomposite solutions. J Colloid Interface Sci 274:515–525

    Article  CAS  Google Scholar 

  • Loizou E, Butler P, Porcar L, Kesselman E, Talmon Y, Dundigalla A, Schmidt G (2005) Large scale structures in nanocomposite hydrogels. Macromolecules 38:2047–2049

    Article  CAS  Google Scholar 

  • Malwitz MM, Butler PD, Porcar L, Angelette DP, Schmidt G (2004) Orientation and relaxation of ploymer-clay solutions studied by rheology and small-angle neutron scattering. J Polym Sci B 42:3102–3112

    Article  CAS  Google Scholar 

  • Martin C, Pignon F, Piau J-M, Magnin A, Lindner P, Cabane B (2002) Dissociation of thixotropic clay gels. Phys Rev E 66:021401-1-11

    Article  CAS  Google Scholar 

  • Moller PCF, Mewis J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–283

    Article  CAS  Google Scholar 

  • Mongondry P (2003) Structure et comportement rhéologique des suspensions aqueuses de Laponite en présence de plusieurs additifs, Ph.D. thesis, Université du Maine-Le Mans, France

  • Mongondry P, Nicolai T, Tassin J-F (2004) Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions. J Colloid Interface Sci 275:191–196

    Article  CAS  Google Scholar 

  • Mongondry P, Tassin J-F, Nicolai T (2005) Revised state diagram of Laponite dispersions. J Colloid Interface Sci 283:397–405

    Article  CAS  Google Scholar 

  • Morvan M, Espinat D, Lambard J, Zemb T (1994) Ultrasmall- and small-angle X-ray scattering of smectite clay suspensions. Colloids Surf A 82:193–203

    Article  CAS  Google Scholar 

  • Moses E, Kume T, Hashimoto T (1994) Shear microscopy of the “butterfly pattern” in polymer mixtures. Phys Rev Lett 72:2037–2040

    Article  CAS  Google Scholar 

  • Mourchid A, Delville A, Lambard J, Lécolier E, Levitz P (1995) Phase diagram of colloidal dispersions of anisotropic charged particles: equilibrium properties, structure, and rheology of laponite suspensions. Langmuir 11:1942–1950

    Article  CAS  Google Scholar 

  • Mourchid A, Lécolier E, Van Damme H, Levitz P (1998) On viscoelastic, birefringent, and swelling properties of Laponite clay suspensions: revisited phase diagram. Langmuir 14:4718–4723

    Article  CAS  Google Scholar 

  • Mourchid A, Levitz P (1998) Long-term gelation of laponite aqueous dispersions. Phys Rev E 57:R4887-R4890

    Article  CAS  Google Scholar 

  • Nelson A, Cosgrove T (2004) A small-angle neutron scattering study of adsorbed poly(ethylene oxide) on Laponite. Langmuir 20:2298–2304

    Article  CAS  Google Scholar 

  • Nicolai T, Cocard S (2001) Dynamic light-scattering study of aggregating and gelling colloidal disks. J Colloid Interface Sci 244:51–57

    Article  CAS  Google Scholar 

  • Panine P, Narayanan T, Vermant J, Mewis J (2002) Structure and rheology during shear-induced crystallization of a latex suspension. Phys Rev E 66:022401-1-4

    Article  CAS  Google Scholar 

  • Piau J-M, Dorget M, Palierne JF, Pouchelon A (1999) Shear elasticity and yield stress of silicasilicone physical gels: Fractal approach. J Rheol 43:305–314

    Article  CAS  Google Scholar 

  • Pignon F, Magnin A, Piau J-M (1996a) Thixotropic colloidal suspensions and flow curves with minimum: identification of flow regimes and rheometric consequences. J Rheol 40:573–587

    Article  CAS  Google Scholar 

  • Pignon F, Piau J-M, Magnin A (1996b) Structure and pertinent length scale of a discotic clay gel. Phys Rev Lett 76:4857–4860

    Article  CAS  Google Scholar 

  • Pignon F, Magnin A, Piau J-M, Cabane B, Lindner P, Diat O (1997a) Yield stress thixotropic clay suspension: invesitgations of structure by light, neutron, and X-ray scattering. Phys Rev E 56:3281–3289

    Article  CAS  Google Scholar 

  • Pignon F, Magnin A, Piau J-M (1997b) Butterfly light scattering pattern and rheology of a sheared thixotropic clay gel. Phys Rev Lett 79:4689–4692

    Article  CAS  Google Scholar 

  • Pignon F, Magnin A, Piau J-M (1998) Thixotropic behavior of clay dispersions: combinations of scattering and rheometric techniques. J Rheol 42:1349–1373

    Article  CAS  Google Scholar 

  • Pozzo DC, Walker LM (2004) Reversible shear gelation of polymer–clay dispersions. Colloids Surf A 240:187–198

    Article  CAS  Google Scholar 

  • Ramsay JDF, Swanton SW, Bunce J (1990) Swelling and dispersion of smectite clay colloids: determination of structure by neutron diffraction and small-angle neutron scattering. J Chem Soc Faraday Trans 86:3919–3926

    Article  CAS  Google Scholar 

  • Ramsay JDF, Lindner P (1993) Small-angle neutron scattering investigations of the structure of thixotropic dispersions of smectite clay colloids. J Chem Soc Faraday Trans 89:4207–4214

    Article  CAS  Google Scholar 

  • Rosta L, Von Gunten HR (1990) Light scattering characterization of laporite sols. J Colloid Interface Sci 134:397–406

    Article  CAS  Google Scholar 

  • Saunders JM, Goodwin JW, Richardson RM, Vincent B (1999) A small-angle X-ray scattering study of the structure of aqueous Laponite dispersions. J Phys Chem B 103:9211–9218

    Article  CAS  Google Scholar 

  • Schmidt G, Nakatani AI, Butler PD, Karim A, Han CC (2000) Shear orientation of viscoelastic polymer–clay solutions probed by flow birefringence and SANS. Macromolecules 33:7219–7222

    Article  CAS  Google Scholar 

  • Schmidt G, Nakatani AI, Butler PD, Han CC (2002a) Small-angle neutron scattering from viscoelastic polymer–clay solutions. Macromolecules 35:4725–4732

    Article  CAS  Google Scholar 

  • Schmidt G, Nakatani AI, and Han CC (2002b) Rheology and flow-birefringence from viscoelastic polymer–clay solutions. Rheol Acta 41:45–54

    Article  CAS  Google Scholar 

  • Schmidt G, Malwitz MM (2003) Properties of polymer–nanoparticle composites. Curr Opin Colloid Interface Sci 8:103–108

    Article  CAS  Google Scholar 

  • Tanaka H, Meunier J, Bonn D (2004) Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels. Phys Rev E 69:031404-1-6

    Google Scholar 

  • Tanaka H, Jabbari-Farouji S, Meunier J, Bonn D (2005) Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: aging and gelation. Phys Rev E 71:021402-1-10

    Google Scholar 

  • Thomson DW, Butterworth JT (1992) The nature of laponite and its aqueous dispersions. J Colloid Interface Sci 151:236–243

    Article  Google Scholar 

  • Vermant J, Solomon M (2005) Flow-induced structure in colloidal suspensions. J Phys Condens Matter 17:R187–R216

    Article  CAS  Google Scholar 

  • Wheeler EK, Izu P, Fuller GG (1996) Structure and rheology of wormlike micelles. Rheol Acta 35:139–149

    Article  CAS  Google Scholar 

  • Zebrowski J, Prasad V, Zhang W, Walker LM, Weitz DA (2003) Shake-gels: shear-induced gelation of laponite-PEO mixtures. Colloids Surf A 213:189–197

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by CNRS, France and NSERC, Canada. J. R. de B. is grateful for the hospitality of the Laboratoire de Rhéologie during the time that this research was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. de Bruyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bruyn, J.R., Pignon, F., Tsabet, E. et al. Micron-scale origin of the shear-induced structure in Laponite–poly(ethylene oxide) dispersions. Rheol Acta 47, 63–73 (2008). https://doi.org/10.1007/s00397-007-0211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0211-x

Keywords

Navigation