Skip to main content
Log in

Dynamic viscoelastic properties of free radical bulk polymerizing systems under near-isothermal and non-isothermal conditions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Dynamic viscoelastic moduli of an example polymerizing system namely the free radical bulk polymerization of methyl methacrylate (MMA), is studied using a Haake® rheometer–reactor assembly and an adapted Haake® HV-DIN cup-and-bob assembly. A series of experiments on the bulk polymerization of MMA under different temperature histories (isothermal, step-increase and step-decrease) and at two different initiator [2, 2′-azoisobutyronitrile (AIBN)] concentrations, have been carried out. The data on the storage modulus, G′, the loss modulus, G″, and the phase shift, δ, are measured during the course of polymerization, well into the gel effect region. A new correlation is developed for these properties. The kinetic model and the correlation for the zero-shear viscosity, presented in our earlier studies, are used in this generalized correlation. The correlation so developed is observed to represent experimental data quite well for a variety of temperature histories. The characteristic relaxation time, τi, representing the bulk polymerization of MMA is observed to be larger than the Rouse value, τR, by a factor of about seven. The findings are observed to be in agreement with several other studies for entangled non-polymerizing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Achilias DS, Kiparissides C (1988) Modeling of diffusion-controlled free radical polymerization reactors. J Appl Polym Sci 35:1303–1323

    Article  CAS  Google Scholar 

  • Achilias DS, Kiparissides C (1992) Development of a general mathematical framework for modeling diffusion-controlled free radical polymerization reactions. Macromolecules 25:3739–3750

    Article  CAS  Google Scholar 

  • Balke ST, Hamielec AE (1973) Bulk polymerization of methyl methacrylate. J Appl Polym Sci 17:905–949

    Article  CAS  Google Scholar 

  • Cassagnau P, Melis F, Michel A (1997) Correlation for linear viscoelastic behavior and molecular weight evolution in the bulk urethane polymerization. J Appl Polym Sci 65:2395–2406

    Article  CAS  Google Scholar 

  • Cassagnau P, Michel A, Aulagner-Revenu P, Carrot C, Guillet J (2000) Viscoelastic predictive laws of linear polyurethane: rheological changes during bulk polymerization. Polym Eng Sci 40:880–891

    Article  CAS  Google Scholar 

  • Chiu WY, Carratt GM, Soong DS (1983) A computer model for the gel effect in free-radical polymerization. Macromolecules 16:348–357

    Article  CAS  Google Scholar 

  • Cho KS, Ahn KH, Lee SJ (2004) Simple method for determining the critical molecular weight from the loss modulus. J Polym Sci Polym Phys 42:2724–2729

    Article  CAS  Google Scholar 

  • Curteanu S, Bulacovschi V (1999) Free radical polymerization of methyl methacrylate: modeling and simulation under semi-Batch and non-isothermal reactor conditions. J Appl Polym Sci 74:2561–2570

    Article  CAS  Google Scholar 

  • Davis WE, Elliott JH (1955) Flow properties. In.: Ott E, Spurlin H, Grafflin MW (eds) High polymers (Vol. 5), cellulose and cellulose derivatives. Part III. Interscience, New York, pp 1203–1246

    Google Scholar 

  • Denson CD, Prest WM Jr, O’Reilly JM (1969) A comparison between rheological data for polymer melts and Spriggs four-constant rheological model. AIChE J 15:809–814

    Article  CAS  Google Scholar 

  • Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Google Scholar 

  • Embiricu M, Lima EL, Pinto JC (1996) A survey of advanced control of polymerization reactors. Polym Eng Sci 36:433–447

    Article  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Fevotte G, McKenna TF, Othman S, Santos AM (1998) A combined hardware/software sensing approach for on-line control of emulsion polymerization process. Comp Chem Eng 22:S443–S449

    Article  CAS  Google Scholar 

  • Fuchs K, Friedrich C, Weese J (1996) Viscoelastic properties of narrow-distribution poly(methyl methacrylates). Macromolecules 29:5893–5901

    Article  CAS  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA

    Google Scholar 

  • Guseeva EV, Lachinov MB, Koroliov BA, Zubov VP, Dreval VE (1986) Kinetic and rheological study of the autoacceleration mechanism on the styrene radical bulk-polymerization. Vestn Mosk Unive Ser 2 Khim 27:314–317

    Google Scholar 

  • Hui AW, Hamielec AE (1972) Thermal polymerization of styrene at high conversions and temperatures. An experimental study. J Appl Polym Sci 16:749–769

    Article  CAS  Google Scholar 

  • Jones TER, Davies JM (1982) Torsional vibrational properties of rubber. Rheol Acta 21:416–419

    Article  Google Scholar 

  • Korolev BA, Lachinov MB, Dreval VY, Zubov VP, Vinogradov GV, Kabanov VA (1983) Rheological study of the mechanism of gel-effect in radical polymerization of butyl methacrylate in bulk. Vysokomol Soedin A 25:2430–2434

    CAS  Google Scholar 

  • Levitsky SP, Bergman RM, Haddad J (2004) Sound dispersion in a deformable tube with polymeric liquid and elastic central rod. J Sound Vib 275:267–281

    Article  Google Scholar 

  • Malkin AYa (1980) Rheology in polymerization processes. Polym Eng Sci 20:1035–1044

    Article  CAS  Google Scholar 

  • Malkin AYa, Kulchikhin SG (1984) Rheokinetics of free radical polymerization. Polymer 25:778–784

    Article  CAS  Google Scholar 

  • Mankar RB, Saraf DN, Gupta SK (1999) Viscoelastic behavior of polymerizing systems. Rheol Acta 38:84–89

    Article  CAS  Google Scholar 

  • McCrum NG, Read BE, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, New York, (also, Dover, New York, 1991)

    Google Scholar 

  • Menezes EV, Graessley WW (1982) Nonlinear rheological behavior of polymer systems for several shear-flow histories. J Polym Sci Polym Phys 20:1817–1833

    Article  CAS  Google Scholar 

  • Patel M (2004) Viscoelastic properties of polystyrene using dynamic rheometry. Polym Test 23:107–112

    Article  CAS  Google Scholar 

  • Norrish RGW, Smith RR (1942) Catalyzed polymerization of methyl methacrylate in the liquid phase. Nature 150:336–337

    CAS  Google Scholar 

  • Ohshima M, Tanigaki M (2000) Quality control of polymer processes. J Proc Control 10:135–148

    Article  CAS  Google Scholar 

  • Osaki K, Inoue T, Uematsu T (2001a) Viscoelastic properties of dilute polymer solutions: the effect of varying the concentration. J Polym Sci Polym Phys 39:211–217

    Article  CAS  Google Scholar 

  • Osaki K, Inoue T, Uematsu T, Yamashita Y (2001b) Evaluation methods of the longest rouse relaxation time of an entangled polymer in a semi-dilute solution. J Polym Sci Polym Phys 39:1704–1712

    Article  CAS  Google Scholar 

  • Ray AB, Saraf DN, Gupta SK (1995) Free radical polymerization associated with the Trommsdorff effect under semi-batch reactor conditions. I. Modeling. Polym Eng Sci 35:1290–1299

    Article  CAS  Google Scholar 

  • Roland CM, Archer LA, Mott PH, Sanchez-Reyes J (2004) Determining rouse relaxation times from the dynamic modulus of entangled polymers. J Rheol 48:395–403

    Article  CAS  Google Scholar 

  • Rouse PE (1953) A theory of the linear properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280

    Article  CAS  Google Scholar 

  • Sangwai JS, Bhat SA, Gupta S, Saraf DN, Gupta SK (2005) Bulk free radical polymerization of methyl methacrylate under non-isothermal conditions and with intermediate addition of initiator: experiments and modeling. Polymer 46:11451–11462

    Article  CAS  Google Scholar 

  • Sangwai JS, Saraf DN, Gupta SK (2006) Viscosity of bulk free radical polymerizing systems under near-isothermal and non-isothermal conditions. Polymer 47:3028–3035

    Article  CAS  Google Scholar 

  • Seth V, Gupta SK (1995) Free radical polymerizations associated with the Trommsdorff effect under semi-batch reactor conditions: an improved model. J Polym Eng 15:283–326

    CAS  Google Scholar 

  • Simon PFW, Muller AHE, Pakula T (2001) Characterization of highly branched poly(methyl methacrylate) by solution viscosity and viscoelastic spectroscopy. Macromolecules 34:1677–1684

    Article  CAS  Google Scholar 

  • Spriggs TW (1965) A four-constant model for viscoelastic fluids. Chem Eng Sci 20:931–940

    Article  CAS  Google Scholar 

  • Stanescu P, Majesté JC, Carrot C (2005) Modeling of the linear viscoelastic behavior of low-density polyethylene. J Polym Sci Polym Phys 43:1973–1985

    Article  CAS  Google Scholar 

  • Takada A, Nishimura M, Koike A, Nemeto N (1998) Dynamic light scattering and dynamic viscoelasticity of poly(vinyl alcohol) in aqueous borax solutions. 4. Further investigation on polymer concentration and molecular weight dependencies. Macromolecules 31:436–443

    Article  CAS  Google Scholar 

  • Trommsdorff VE, Köhle H, Lagally P (1947) Zur polymerisation desmethacrylsäuremethylesters. Makromol Chem 1:169–198

    Article  Google Scholar 

  • Tulig TJ, Tirrell MV (1981) Toward a molecular theory of the Trommsdorff effect. Macromolecules 14:1501–1511

    Article  CAS  Google Scholar 

  • Tung CYM, Dynes PJ (1982) Relationship between viscoelastic properties and gelation in thermosetting systems. J Appl Polym Sci 27:569–574

    Article  CAS  Google Scholar 

  • Watanabe H (1999) Viscoelasticity and dynamics of entangled polymers. Prog Polym Sci 24:1253–1403

    Article  CAS  Google Scholar 

  • Yano S, Kitano T (1996) Dynamic viscoelastic properties of polymeric materials. In: Cheremisinoff NP, Cheremisinoff PN (eds) Handbook of applied polymer processing technology. Marcel Dekker, New York, pp 125–188

    Google Scholar 

Download references

Acknowledgements

Financial supports from the Department of Science and Technology, [through grant SR/S3/CE/46/2005-SERC-Engg] and the Ministry of Human Resource Development [through grant F.26-11/2004.TS.V, dated March 31, 2005], Government of India, New Delhi, are gratefully acknowledged. We are also grateful to Dr. D. Kundu, Professor, Department of Mathematics, IIT Kanpur, India, for his help in the error analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangwai, J.S., Saraf, D.N. & Gupta, S.K. Dynamic viscoelastic properties of free radical bulk polymerizing systems under near-isothermal and non-isothermal conditions. Rheol Acta 46, 455–468 (2007). https://doi.org/10.1007/s00397-006-0140-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-006-0140-0

Keywords

Navigation