Skip to main content
Log in

Viscoelastic properties of magnetorheological fluids

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We have studied the rheological properties of some magnetorheological fluids (MRF). MRF are known to exhibit original rheological properties when an external magnetic field is applied, useful in many applications such as clutches, damping devices, pumps, antiseismic protections, etc. While exploiting parameters such as magnetic field intensity, particle concentration and the viscosity of the suspending fluid, we highlighted the importance of each one of these parameters on rheology in the presence of a magnetic field. We made this study by conducting rheological experiments in dynamic mode at very low strain which facilitates the comprehension of the influence of the structure on MRF rheology. Our results confirmed the link between the magnetic forces which ensure the cohesion of the particles in aggregates, and the elastic modulus. Moreover, we found that the loss modulus varies with the frequency in a similar manner than the elastic modulus. The system, even with the smallest deformations, was thus not purely elastic but dissipates also much energy. Moreover, we demonstrated that this dissipation of energy was not due to the matrix viscosity. Actually, we attributed viscous losses to particle movements within aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Bingham EC (1922) Fluidity and plasticity. McGraw Hill, New-York

  • Casson N (1959) Rheology of disperse systems. Pergamon Press, New-York

  • Chin BD, Park JH, Kwon MH, Park OO (2001) Rheological properties and dispersion stability of magnetorheological suspensions. Rheol Acta 40:211–219

    Article  CAS  Google Scholar 

  • Clercx HJH, Bossis G (1993) Many-body electrostatic interactions in electrorheological fluids. Phys Rev E 48(4):2721–2739

    Article  CAS  Google Scholar 

  • Durand E (1968) Magnétostatique. Masson, Paris

  • Gamota DR, Filisko FE (1991) High frequency dynamic mechanical study of an aluminosilicate ER material. J Rheol 35:1411–1426

    Google Scholar 

  • Gamota DR, Wineman AS, Filisko FE (1993) Fourier transform analysis: non-linear dynamic response of an ER material. J Rheol 37:919–933

    Article  CAS  Google Scholar 

  • Gans et al. (2000)

  • Ginder GM, Davis LC (1993) Viscoelasticity of ER fluids: role of electrostatic interactions. Proceeding of the 4th Conference on ER Fluids, Feldkirch, Austria

    Google Scholar 

  • Herschel WH, Buckley R (1926) Kolloid Z 36:291–300

    Google Scholar 

  • Jiles D (1995) Introduction to magnetism and magnetic materials. Chapman & Hall, London

  • Jordan T, Shaw MT, McLeish TCB (1992), Viscoelastic response of electrorheological fluids. II. Field strength and strain dependence. J Rheol 36(3):441–464

    Article  CAS  Google Scholar 

  • Kim et al. (2001)

  • Klingenberg DJ (1989) Study of the steady shear behavior of electrorheological suspensions. Thesis, University of Illinois, Urbana-Champaign

  • Klingenberg DJ (1992) Simulation of the dynamic oscillatory response of electrorheological suspensions: demonstration of a relaxation mechanism. J Rheol 37(2):199–214

    Article  Google Scholar 

  • Kormann C, Laun HM, Richter HJ (1996) MR fluids with nano-sized magnetic particles. Int J Mod Phys B 10:3167–3172

    CAS  Google Scholar 

  • Larrondo LE, Van de Ven TGM (1992) Magnetoviscoelastic properties of chromium dioxide suspensions. J Rheol 36(7):1275–1289

    Article  CAS  Google Scholar 

  • Laun HM, Kormann C, Willenbacher N (1992) Rheometry on magnetorheological (MR) fluids. Rheol Acta 35:417–432

    Google Scholar 

  • Lemaire E (1992) Suspensions electro et magnetorheologiques. Thesis, Université Paris 7, Nice, pp 144–145

  • Lemaire E, Grasseli Y, Bossis G (1992) Field induced structure in magneto and electrorheological fluids. J Phys II France 2:359–369

    Article  CAS  Google Scholar 

  • Maxwell-Garnett JC (1906) Colour in metal glasses and metallic films. Philos Trans R Soc London 203:385–391

    Google Scholar 

  • McLeish TCB, Jordan T, Shaw MT (1991), Viscoelastic response of electrorheological fluids. I. Frequency dependence. J Rheol 35(3):427–448

    Article  CAS  Google Scholar 

  • Otsubo Y (1991) Electrorheological properties of barium titanate suspensions under oscillatory shear. Colloids Surf 58:73–86

    Article  CAS  Google Scholar 

  • Otsubo Y, Sekin M, Katayama S (1992) Electrorheological properties of silica suspensions. J Rheol 36(3):479–496

    Article  CAS  Google Scholar 

  • Parthasarathy M, Klingenberg DJ (1995a) A microstructural investigation of the nonlinear response of ER suspensions. I. Start-up of steady shear flow. Rheol Acta 34:417–429

    CAS  Google Scholar 

  • Parthasarathy M, Klingenberg DJ (1995b) A microstructural investigation of the nonlinear response of ER suspensions. II. Oscillatory shear flow. Rheol Acta 34:430–439

    CAS  Google Scholar 

  • Parthasarathy M, Ahn KH, Belongia B, Klingenberg DJ (1994) The role of suspension structure in the dynamic response of electrorheological suspensions. Int J Mod Phys B 8:2789–2809

    CAS  Google Scholar 

  • Phulle PP, Ginder JM (1999) Synthesis and properties of novel magnetorheological fluids having improved stability and redispersibility. Int J Mod Phys B 13:2019–2027

    Article  Google Scholar 

  • Rabinow J (1948) The magnetic fluid clutch. AIEE Trans 67:1308–1315

    Google Scholar 

  • Rankin PJ, Horvath AT, Klingenberg DJ (1999) Magnetorheology in viscoplastic media. Rheol Acta 38:471–477

    CAS  Google Scholar 

  • Tang X, Conrad H (1996) Quasistatic measurements on a magnetorheological fluid. J Rheol 40(6):1167–1177

    CAS  Google Scholar 

  • Volkova O (1998) Etude de la rhéologie de suspensions de particules magnétiques. Thesis, Université de Nice, Nice

  • Volkova O, Bossis G, Guyot M, Bashtovoi V, Reks A (2000) Magnetorheology of magnetic holes compared to magnetic particles. J Rheol 44(1):91

    Article  CAS  Google Scholar 

  • Yen WS, Achorn PJ (1991) A study of the dynamic behavior of an electrorheological fluid. J Rheol 35:1375–1384

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Montfort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claracq, J., Sarrazin, J. & Montfort, JP. Viscoelastic properties of magnetorheological fluids. Rheol Acta 43, 38–49 (2004). https://doi.org/10.1007/s00397-003-0318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-003-0318-7

Keywords

Navigation