Skip to main content

Advertisement

Log in

Squeeze flow of soft solids between rough surfaces

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Newtonian liquids and non-Newtonian soft solids were squeezed between parallel glass plates by a constant force F applied at time t=0. The plate separation h(t) and the squeeze-rate \( V = - \dot h \) were measured for different amplitudes of plate roughness in the range 0.3–31 μm. Newtonian liquids obeyed the relation V∝h 3 of Stephan (1874) for large plate separations. Departures from this relation that occurred when h approached the roughness amplitude were attributed to radial liquid permeation through the rough region. Most non-Newtonian materials showed boundary-slip that varied with roughness amplitude. Some showed slip that varied strongly during the squeezing process. Perfect slip (zero boundary shear stress) was not approached by any material, even when squeezed by optically-polished plates. If the plates had sufficient roughness amplitude (e.g. about 30 μm), boundary slip was practically absent, and the dependence of V on h was close to that predicted by no-slip theory of a Herschel-Bulkley fluid in squeeze flow (Covey and Stanmore 1981, Adams et al. 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

References

  • Adams MJ, Briscoe BJ, Kamjab M (1993) The deformation and flow of highly concentrated dispersions. Adv Colloid Interface Sci 44:143–182

    CAS  Google Scholar 

  • Adams MJ, Edmondson B, Caughey DG, Yahya R (1994) An experimental and theoretical study of the squeeze-film deformation and flow of elastoplastic fluids. J Non-Newtonian Fluid Mech 51:61–78

    Google Scholar 

  • Adams MJ, Aydin İ, Briscoe BJ, Sinha SK (1997) A finite element analysis of the squeeze flow of an elasto-viscoplastic paste material. J Non-Newtonian Fluid Mech 71:41–57

    Google Scholar 

  • Adams MJ, Briscoe BJ, Corfield GM, Lawrence CJ (1998) The wall yield of rate-dependent materials. In: Adams MJ, Mashelkar RA, Pearson JRA, Rennie AR (eds) Dynamics of complex fluids, chap 28. Imperial College and The Royal Society, London

  • Ak MM, Gunasekaran S (2000) Simulation of lubricated squeezing flow of a Herschel-Bulkley fluid under constant force. Appl Rheol Nov/Dec:274–279

  • Aral BK, Kalyon DM (1994) Effects of temperature and surface roughness on time-dependent development of wall slip in steady torsional flow of concentrated suspensions. J Rheol 38:957–972

    Article  CAS  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-Newtonian Fluid Mech 56:221–251

    Google Scholar 

  • Barnes HA (1999a) The yield stress—a review or “παντα ρει”—everything flows? J Non-Newtonian Fluid Mech 81:133–178

    Google Scholar 

  • Barnes HA (1999b) A brief history of the yield stress. Appl Rheol 9:262–266

    CAS  Google Scholar 

  • Barnes HA (2000) Measuring the viscosity of large-particle (and flocculated) suspensions—a note on the necessary gap size of rotational viscometers. J Non-Newtonian Fluid Mech 94:213–217

    Google Scholar 

  • Baudry J, Charlaix E, Tonck A, Mazuyer D (2001) Experimental evidence for a large slip effect at a non-wetting fluid-solid interface. Langmuir 17:5232–5236

    Article  CAS  Google Scholar 

  • Braithwaite GJC, McKinley GH (1999) Microrheometry for studying the rheology and dynamics of polymers near interfaces. Appl Rheol 9:27–33

    CAS  Google Scholar 

  • Brochard F, de Gennes PG (1992) Shear-dependent slippage at a polymer/solid interface. Langmuir 8:3033–3037

    CAS  Google Scholar 

  • Buscall R, McGowan JI, Morton-Jones AJ (1993) The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J Rheol 37:621–641

    Article  CAS  Google Scholar 

  • Campanella OH, Peleg M (1987a) Determination of the yield stress of semi-liquid foods from squeezing flow data. J Food Sci 52:214–217

    Google Scholar 

  • Campanella OH, Peleg M (1987b) Squeezing flow viscometry of peanut butter. J Food Sci 52:180–184

    Google Scholar 

  • Campanella OH, Peleg M, Popplewell LM, Rosenau JR (1987) Elongational viscosity measurements of melting American processed cheese. J Food Sci 52:180–184

    Google Scholar 

  • Chan TW, Baird DG (2002) An evaluation of a squeeze flow rheometer for the rheological characterization of a filled polymer with a yield stress. Rheol Acta 41:245–256

    Article  CAS  Google Scholar 

  • Chatraei S, Macosko CW, Winter HH (1981) Lubricating squeezing flow: a new biaxial extensional rheometer. J Rheol 25:433–443

    CAS  Google Scholar 

  • Cheng JT, Giordano N (2002) Fluid flow through nanometer-scale channels. Phys Rev E 65:031206, pp 1–5

    Article  CAS  Google Scholar 

  • Citerne GP, Carreau PJ, Moan M (2001) Rheological properties of peanut butter. Rheol Acta 40:86–96

    Article  CAS  Google Scholar 

  • Corradini MG, Stern V, Suwonsichon T, Peleg M (2000) Squeezing flow of semi liquid foods between parallel Teflon coated plates. Rheol Acta 39:452–460

    CAS  Google Scholar 

  • Covey GH, Stanmore BR (1981) Use of the parallel-plate plastometer for the characterisation of viscous fluids with a yield stress. J Non-Newtonian Fluid Mech 8:249–260

    Google Scholar 

  • Craig VSJ, Neto C, Williams DRM (2001) Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys Rev Lett 87:054504 1–4

    Google Scholar 

  • de Gennes PG (2002) On fluid/wall slippage. Langmuir 18:3413–3414

    Article  Google Scholar 

  • Denn MM (1998) Are plug flow regions possible in fluids exhibiting yield stress? In: Adams MJ, Mashelkar RA, Pearson JRA, Rennie AR (eds) Dynamics of complex fluids, chap 26. Imperial College and The Royal Society, London

  • Dukes WA (1957) Rheological measurements on lutings. In: ed. Mill CC (ed) Rheology of disperse systems, chap 8. Pergamon, London

  • Grosshans D, Knaebel A, Lequeux F (1995) Plasticity of an amorphous assembly of elastic gel beads. J Phys II France 5:53–62

    CAS  Google Scholar 

  • Hoffner B, Gerhards C, Peleg M (1997) Imperfect lubricated squeezing flow viscometry for foods. Rheol Acta 36:686–693

    CAS  Google Scholar 

  • Hu H, Larson RG, Magda JJ (2002) Measurement of wall-slip-layer rheology in shear-thickening wormy micelle solutions. J Rheol 46:1001–1021

    Article  CAS  Google Scholar 

  • Hutton JF, Matthews JB (1954) Viscoelastic behaviour of lubricating greases. In: Harrison VGW (ed) Proceedings of the 2nd International Congress on Rheology, pp 408–413. Butterworths, London

  • Jiang P, See H, Swain MV, Phan-Thien N (2003) Using oscillatory squeeze flow to measure the viscoelastic properties of dental composite resin cements during curing. Rheol Acta 42:118–122

    CAS  Google Scholar 

  • Jossic L, Magnin A (2001) Drag and stability of objects in a yield stress fluid. AIChE J 47:2666–2672

    CAS  Google Scholar 

  • Kompani M, Venerus DC (2000) Equibiaxial extensional flow of polymer melts via lubricated squeeze flow. I. Experimental analysis. Rheol Acta 39:444–451

    CAS  Google Scholar 

  • Laun HM, Rady M, Hassager O (1999) Analytical solutions for squeeze flow with partial wall slip. J Non-Newtonian Fluid Mech 81:1–15

    Google Scholar 

  • Lawal A, Kalyon DM (1998) Squeezing flow of viscoplastic fluids subject to wall slip. Polym Eng Sci 38:1793–1804

    CAS  Google Scholar 

  • Lawal A, Kalyon DM (2000) Compressive squeeze flow of generalized Newtonian fluids with apparent wall slip. Int Polym Proc XV:63–71

    Google Scholar 

  • Lawrence CJ, Corfield GM (1998) Non-viscometric flow of viscoplastic materials: squeeze flow. In: Adams MJ, Mashelkar RA, Pearson JRA, Rennie AR (eds) Dynamics of complex fluids. Imperial College and The Royal Society, London, chap 27

  • Lipscomb GG, Denn MM (1984) Flow of Bingham fluids in complex geometries. J Non-Newtonian Fluid Mech 14:337–346

    Google Scholar 

  • Llewellin EW (2002) Personal communication

  • Llewellin EW, Mader HM, Wilson SDR (2002) The rheology of a bubbly liquid. Proc R Soc London Ser A 458:967–1016

    Google Scholar 

  • MacKintosh FC, Schmidt CF (1999) Microrheology. Curr Opin Colloid Interface Sci 4:300–307

    Article  CAS  Google Scholar 

  • Magnin A, Piau JM (1990) Cone-and-plate rheometry of yield stress fluids. Study of an aqueous gel. J Non-Newtonian Fluid Mech 36:85–108

    Google Scholar 

  • McClelland MA, Finlayson BA (1983) Squeezing flow of elastic liquids. J Non-Newtonian Fluid Mech 13:181-201

    Google Scholar 

  • Meeten GH (2000) Yield stress of structured fluids measured by squeeze flow. Rheol Acta 39:399–408

    CAS  Google Scholar 

  • Meeten GH (2001) Squeeze flow between plane and spherical surfaces. Rheol Acta 40:279–288

    CAS  Google Scholar 

  • Meeten GH (2002) Constant-force squeeze flow of soft solids. Rheol Acta 41:557–566

    Article  CAS  Google Scholar 

  • Min BH, Erwin L, Jennings HM (1994) Rheological behaviour of fresh cement paste as measured by squeeze flow. J Mater Sci 29:1374–1381

    CAS  Google Scholar 

  • Mitutoyo (2002) User’s manual for surface roughness tester SJ-201P

  • Mondy LA, Graham AL, Stroeve P, Majumdar A (1987) Effect of particle surface roughness on particle interactions in concentrated suspensions. AIChE J 33:862–866

    CAS  Google Scholar 

  • Mukhopadhyay A, Granick S (2001) Micro- and nanorheology. Curr Opin Colloid Interface Sci 6:423–429

    Article  CAS  Google Scholar 

  • Oliver DR, Huang X (2000) Squeeze film testing of ceramic pastes. Br Ceram Trans 99:101–108

    CAS  Google Scholar 

  • Pal R (2000) Slippage during the flow of emulsions in rheometers. Colloids Surf A 162:55–66

    Article  CAS  Google Scholar 

  • Payet B, Dufour J, Jorat L, Noyel G (1999) A magneto-optical method for viscosimetric measurements. J Meas Sci Technol 10:1054–1058

    Article  CAS  Google Scholar 

  • Pearson JRA, Petrie CJS (1968) On melt flow instability of extruded polymers. In: Wetton RE, Whorlow RW (eds) Polymer systems, deformation and flow, chap 15. Macmillan, London

  • Phan-Thien N, Nasseri S, Bilston LE (2000) Oscillatory squeezing flow of a biological material. Rheol Acta 39:409–417

    CAS  Google Scholar 

  • Picart C, Piau JM, Galliard H, Carpentier P (1998) Human blood shear yield stress and its hematocrit dependence. J Rheol 42:1–12

    Article  CAS  Google Scholar 

  • Plucinski J, Gupta RK, Chakrabati S (1998) Wall slip of mayonnaises in viscometers. Rheol Acta 37:256–269

    Article  CAS  Google Scholar 

  • Poitou A, Racineux G (2001) A squeezing experiment showing binder migration in concentrated suspensions. J Rheol 45:609–625

    Article  CAS  Google Scholar 

  • Raynaud JS, Moucheront P, Baudez JC, Bertrand F, Guilbaud JP, Coussot P (2002) Direct determination by nuclear magnetic resonance of the thixotropic and yielding behaviour of suspensions. J Rheol 46:709–732

    Article  CAS  Google Scholar 

  • Richardson S (1973) On the no-slip boundary condition. J Fluid Mech 59:707–719

    Google Scholar 

  • Roberts GP, Barnes HA, Carew P (2001) Modelling the flow behaviour of very shear-thinning liquids. Chem Eng Sci 56:5617–5623

    CAS  Google Scholar 

  • Sanchez-Reyes J, Archer LA (2002) Steady shear rheology of entangled polymer liquids: implications of interfacial slip. J Rheol 46:1239–1262

    Article  CAS  Google Scholar 

  • See H, Jiang P, Phan-Thien N (2000) Concentration dependence of the linear viscoelastic properties of particle suspensions. Rheol Acta 39:131–137

    CAS  Google Scholar 

  • Sherwood JD, Durban D (1998) Squeeze-flow of a Herschel-Bulkley fluid. J Non-Newtonian Fluid Mech 77:115–121

    Google Scholar 

  • Stephan J (1874) Versuche über die scheinbare Adhäsion, Sitzungsberichte der kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Class, Abteilung Wien 69:713–735

    Google Scholar 

  • Soskey PR, Winter HH (1985) Equibiaxial extension of two polymer melts: polystyrene and polyethylene. J Rheol 29:493–517

    Article  CAS  Google Scholar 

  • Suwonsichon T, Peleg M (1999) Imperfect squeezing flow viscosimetry for commercial refried beans. Food Sci Technol Int 5:159–166

    Google Scholar 

  • Tanner RI (1963) Non-Newtonian lubrication theory and its application to the short journal bearing. Aust J Appl Sci 14:129–136

    Google Scholar 

  • Venerus DC, Kompani M, Bernstein B (2000) Equibiaxial extensional flow of polymer melts via lubricated squeeze flow. II. Flow modeling. Rheol Acta 39:574–582

    Article  CAS  Google Scholar 

  • Walberer JA, McHugh AJ (2001) The linear viscoelastic behavior of highly filled polydimethylsiloxane measured in shear and compression J Rheol 45:187–201

    Article  CAS  Google Scholar 

  • Weitz D (2001) Memories of paste. Nature 410:32–33

    CAS  PubMed  Google Scholar 

  • Wilson WH (1999) Tribology. In: Hall Stephens J (ed) Kempe’s engineers year-book. Miller Freeman, UK

  • Yang F (1998) Exact solution for compressive flow of viscoplastic fluids under perfect slip wall boundary conditions. Rheol Acta 37:69–72

    Google Scholar 

  • Zhu Y, Granick S (2001a) Friction and the continuum limit-where is the boundary? Mater Res Symp Proc 651:1–8

    Google Scholar 

  • Zhu Y, Granick S (2001b) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87:096105 1–4

    Google Scholar 

Download references

Acknowledgements

I am grateful to JD Sherwood (Schlumberger) and WG Griffin (University of Cambridge; Earth Sciences) for useful discussions and to EW Llewellin (University of Bristol) for unpublished LGS data. I am obliged to MC Sheppard (Schlumberger) for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Henry Meeten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meeten, G.H. Squeeze flow of soft solids between rough surfaces. Rheol Acta 43, 6–16 (2004). https://doi.org/10.1007/s00397-003-0311-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-003-0311-1

Keywords

Navigation