Skip to main content

Advertisement

Log in

Chitosan/gelatin hybrid nanogel containing doxorubicin as enzyme-responsive drug delivery system for breast cancer treatment

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Here, chitosan/gelatin hybrid nanogel containing gold nanoparticles (CS/AuNPs@Gel) was prepared as an efficient enzyme-responsive carrier for doxorubicin (DOX) delivery. Nanogel was fabricated via ionic crosslinking of CS/AuNPs in the presence of gelatin as an enzyme-responsive moiety. The physicochemical properties of the final compounds were investigated by FT-IR, DLS, TEM, and UV–Vis spectroscopy. The mean size of the prepared CS/AuNPs and CS/AuNPs@Gel was around 83 nm and 119.3 nm with a zeta potential of 83.9 mV and 31.9 mV, respectively. The loading efficiency of DOX in the CS/AuNPs@Gel nanogel was about 56% and DOX was released from the nanogel in an enzyme-responsive manner. The cytotoxic assay on the MCF-7 cells revealed the nontoxicity of free nanogel, the effectiveness of drug-loaded nanogel (DN), and DN in the presence of an enzyme compared with the free DOX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jacob J, Haponiuk JT, Thomas S, Gopi S (2018) Biopolymer based nanomaterials in drug delivery systems: a review. Mater Today Chem 9:43–55. https://doi.org/10.1016/j.mtchem.2018.05.002

  2. Ranjbar-Navazi Z, Fathi M, Abdolahinia ED, Omidi Y, Davaran S (2021) MUC-1 aptamer conjugated InP/ZnS quantum dots/nanohydrogel fluorescent composite for mitochondria-mediated apoptosis in MCF-7 cells. Mater Sci Eng C 118:111469. https://doi.org/10.1016/j.msec.2020.111469

  3. Kukoyi AR (2016) Economic impacts of natural polymers. Natural Polymers 339–362 (Springer)

  4. Fathi M, Safary A, Barar J (2020) Therapeutic impacts of enzyme-responsive smart nanobiosystems. BioImpacts: BI 10(1):1. https://doi.org/10.15171/bi.2020.01

  5. Khiavi MA, Safary A, Aghanejad A, Barar J, Rasta SH, Golchin A et al (2019) Enzyme-conjugated gold nanoparticles for combined enzyme and photothermal therapy of colon cancer cells. Colloids Surf A Physicochem Eng Asp 572:333–344. https://doi.org/10.1016/j.colsurfa.2019.04.019

  6. Hu Q, Katti PS, Gu Z (2014) Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6(21):12273–12286. https://doi.org/10.1039/C4NR04249B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P et al (2020) Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 12(6):1397. https://doi.org/10.3390/polym12061397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu J, Li Z, Zink JI, Tamanoi F (2012) In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: enhanced efficacy by folate modification. Nanomed: Nanotechnol Biol Med 8(2):212–220. https://doi.org/10.1016/j.nano.2011.06.002

  9. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62(2):90–99. https://doi.org/10.1016/j.phrs.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  10. Banu H, Sethi DK, Edgar A, Sheriff A, Rayees N, Renuka N et al (2015) Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B Biol 149:116–128. https://doi.org/10.1016/j.jphotobiol.2015.05.008

  11. Essawy MM, El-Sheikh SM, Raslan HS, Ramadan HS, Kang B, Talaat IM et al (2021) Function of gold nanoparticles in oral cancer beyond drug delivery: implications in cell apoptosis. Oral Dis 27(2):251–265. https://doi.org/10.1111/odi.13551

    Article  PubMed  Google Scholar 

  12. Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2(1):1–6. https://doi.org/10.1186/1745-6673-2-16

    Article  CAS  Google Scholar 

  13. Khodashenas B, Ardjmand M, Rad A, Esfahani M (2021) Gelatin-coated gold nanoparticles as an effective pH-sensitive methotrexate drug delivery system for breast cancer treatment. Mater Today Chem 20:100474. https://doi.org/10.1016/j.mtchem.2021.100474

  14. Grobmyer SR, Zhou G, Gutwein LG, Iwakuma N, Sharma P, Hochwald SN (2012) Nanoparticle delivery for metastatic breast cancer. Nanomed Nanotechnol Biol Med 8:S21–S30. https://doi.org/10.1016/j.nano.2012.05.011

  15. Arami S, Mahdavi M, Rashidi MR, Fathi M, Hejazi M-s, Samadi N (2016) Novel polyacrylate-based cationic nanoparticles for survivin siRNA delivery combined with mitoxantrone for treatment of breast cancer. Biologicals 44(6):487–496. https://doi.org/10.1016/j.biologicals.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  16. Gobi R, Ravichandiran P, Babu RS, Yoo DJ (2021) Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: a review. Polymers 13(12):1962. https://doi.org/10.3390/polym13121962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang YY, Wang Y, Powell R, Chan P (2006) Polymeric core-shell nanoparticles for therapeutics. Clin Exp Pharmacol Physiol 33(5–6):557–562. https://doi.org/10.1111/j.1440-1681.2006.04408.x

    Article  CAS  PubMed  Google Scholar 

  18. Coelho JF (2014) Drug delivery systems: advanced technologies potentially applicable in personalised treatment, educational measures. EPMA Journal: Springer; p 1–1

  19. Fathi M, Abdolahinia ED, Barar J, Omidi Y (2020) Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine 15(22):2171–2200. https://doi.org/10.2217/nnm-2020-0146

    Article  CAS  PubMed  Google Scholar 

  20. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

  21. Fathi M, Zangabad PS, Majidi S, Barar J, Erfan-Niya H, Omidi Y (2017) Stimuli-responsive chitosan-based nanocarriers for cancer therapy. BioImpacts: BI 7(4):269. https://doi.org/10.15171/bi.2017.32

  22. Yousefi M, Orojzadeh P, Jafari SM (2019) Nanoencapsulation of food ingredients by dendrimers. Biopolymer nanostructures for food encapsulation purposes. Elsevier; p. 607-625

  23. Mu J, Lin J, Huang P, Chen X (2018) Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem Soc Rev 47(15):5554–5573. https://doi.org/10.1039/C7CS00663B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Safary A, Moniri R, Hamzeh-Mivehroud M, Dastmalchi S (2019) Highly efficient novel recombinant L-asparaginase with no glutaminase activity from a new halo-thermotolerant Bacillus strain. BioImpacts: BI 9(1):15. https://doi.org/10.15171/bi.2019.03

  25. Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M (2019) Enzyme responsive drug delivery systems in cancer treatment. J Control Release 308:172–189. https://doi.org/10.1016/j.jconrel.2019.07.004

  26. Cheng N-C, Lin W-J, Ling T-Y, Young T-H (2017) Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater 51:258–267. https://doi.org/10.1016/j.actbio.2017.01.060

  27. Nezhad-Mokhtari P, Akrami-Hasan-Kohal M, Ghorbani M (2020) An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications. Int J Biol Macromol 154:198–205. https://doi.org/10.1016/j.ijbiomac.2020.03.112

  28. Fathi M, Zangabad PS, Barar J, Aghanejad A, Erfan-Niya H, Omidi Y (2018) Thermo-sensitive chitosan copolymer-gold hybrid nanoparticles as a nanocarrier for delivery of erlotinib. Int J Biol Macromol 106:266–276. https://doi.org/10.1016/j.ijbiomac.2017.08.020

  29. Chidambaram N, Burgess D (1999) A novel in vitro release method for submicron-sized dispersed systems. AAPS Pharm Sci 1(3):32–40. https://doi.org/10.1208/ps010311

    Article  Google Scholar 

  30. Baei P, Jalili-Firoozinezhad S, Rajabi-Zeleti S, Tafazzoli-Shadpour M, Baharvand H, Aghdami N (2016) Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater Sci Eng C 63:131–141. https://doi.org/10.1016/j.msec.2016.02.056

  31. Peng J, Wang X, Lou T (2020) Preparation of chitosan/gelatin composite foam with ternary solvents of dioxane/acetic acid/water and its water absorption capacity. Polym Bull 77(10):5227–5244. https://doi.org/10.1007/s00289-019-03016-2

    Article  CAS  Google Scholar 

  32. Ferreira Tomaz A, Sobral de Carvalho SM, Cardoso Barbosa R, L. Silva SM, Sabino Gutierrez MA, B. de Lima AG, et al (2018) Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials 11(10):2051. https://doi.org/10.2147/IJN.S232350

    Article  PubMed  PubMed Central  Google Scholar 

  33. Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM (2014) Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2:48. https://doi.org/10.3389/fchem.2014.00048

  34. Corbierre MK, Cameron NS, Sutton M, Mochrie SG, Lurio LB, Rühm A et al (2001) Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc 123(42):10411–10412. https://doi.org/10.1021/ja0166287

    Article  CAS  PubMed  Google Scholar 

  35. Chen AL, Hu YS, Jackson MA, Lin AY, Young JK, Langsner RJ et al (2014) Quantifying spectral changes experienced by plasmonic nanoparticles in a cellular environment to inform biomedical nanoparticle design. Nanoscale Res Lett 9(1):1–16. https://doi.org/10.1186/1556-276X-9-454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang X, Hu Y, Liu R, Sun J, Fang S (2015) Thermosensitive gold nanoparticles based on star-shaped poly (N-isopropylacrylamide) with a cubic silsesquioxane core. Macromol Res 23(3):227–230. https://doi.org/10.1007/s13233-015-3038-9

    Article  CAS  Google Scholar 

  37. Salem DS, Sliem MA, El-Sesy M, Shouman SA, Badr Y (2018) Improved chemo-photothermal therapy of hepatocellular carcinoma using chitosan-coated gold nanoparticles. J Photochem Photobiol B Biol 182:92–99. https://doi.org/10.1016/j.jphotobiol.2018.03.024

  38. Jiang X, Århammar C, Liu P, Zhao J, Ahuja R (2013) The R3-carbon allotrope: a pathway towards glassy carbon under high pressure. Sci Rep 3(1):1–9. https://doi.org/10.1038/srep01877

    Article  CAS  Google Scholar 

  39. Xue P, Cheong KK, Wu Y, Kang Y (2015) An in-vitro study of enzyme-responsive Prussian blue nanoparticles for combined tumor chemotherapy and photothermal therapy. Colloids Surf B 125:277–283. https://doi.org/10.1016/j.colsurfb.2014.10.059

  40. Borse S, Joshi S, Khan A (2015) Enhanced in vitro cytotoxicity and cellular uptake of DNA bases functionalized gold nanoparticles in HeLa cell lines. RSC Adv 5(18):13402–13410. https://doi.org/10.1039/C4RA15356A

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Also, the authors are thankful to the Research Center for Pharmaceutical Nanotechnology at Tabriz University of Medical Sciences and Faculty of Chemical and Petroleum Engineering, University of Tabriz, for the technical supports.

Funding

The study was financially supported by the Research Vice-Chancellor of Tabriz University of Medical Sciences (Grant # 66349).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marziyeh Fathi or Hamid Erfan-Niya.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslzad, S., Heydari, P., Abdolahinia, E.D. et al. Chitosan/gelatin hybrid nanogel containing doxorubicin as enzyme-responsive drug delivery system for breast cancer treatment. Colloid Polym Sci 301, 273–281 (2023). https://doi.org/10.1007/s00396-023-05066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05066-5

Keywords

Navigation