Skip to main content
Log in

Synthesis of a novel mesoporous Fe3O4@SiO2/CTAB-SiO2 composite material and its application in the efficient removal of bisphenol A from water

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, a novel mesoporous magnetic composite material (Fe3O4@SiO2/CTAB-SiO2) was prepared by a sol-gel and etching method. The morphology, composition, structure, and magnetic properties of the mesoporous Fe3O4@SiO2/CTAB-SiO2 composite material were characterized, and the feasibility of using it to remove bisphenol A (BPA) from water was studied. The results showed that under the optimal adsorption conditions, the removal efficiency of BPA by the composite material is 93.2%. Also, the adsorption isotherms and adsorption kinetic studies showed that the Freundlich isotherm model and the pseudo-second-order kinetic model could better describe the equilibrium and kinetic behaviors of the adsorption process. The maximum adsorption capacity of the composite material for the adsorption of BPA was evaluated as 208.3 mg/g, which was a remarkable amount. The thermodynamic study indicated that the adsorption process was chemical, spontaneous, and exothermic, and the main interaction mechanisms with BPA might be electrostatic and hydrophobic interactions. In addition, after 6 cycles of adsorption-desorption, the recovery efficiency was 80.5% and the FTIR, XRD, and TEM tests showed that the overall structure of the composite material was relatively stable, and the results of real sample verification show that the recovery rate of different added BPA concentration (10, 30, and 50 μg/L) was above 90%. In summary, this composite material is a promising effective magnetic adsorbent for removing bisphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are not publicly available due to the data also forms part of an ongoing study but are available from the corresponding author on reasonable request.

References

  1. Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, Widelka M (2016) Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity—a review. Environ Sci Technol 50:5438–5453. https://doi.org/10.1021/acs.est.5b05387

    Article  CAS  PubMed  Google Scholar 

  2. Yan Z, Liu Y, Yan K, Wu S, Han Z, Guo R, Chen M, Yang Q, Zhang S, Chen J (2017) Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: occurrence, distribution, source apportionment, and ecological and human health risk. Chemosphere 184:318–328. https://doi.org/10.1016/j.chemosphere.2017.06.010

    Article  CAS  PubMed  Google Scholar 

  3. Zhao X, Qiu W, Zheng Y, Xiong J, Gao C, Hu S (2019) Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China. Ecotoxicol Environ Saf 180:43–52. https://doi.org/10.1016/j.ecoenv.2019.04.083

    Article  CAS  PubMed  Google Scholar 

  4. Oehlmann J, Schulte-Oehlmann U, Bachmann J, Oetken M, Lutz I, Kloas W, Ternes TA (2006) Bisphenol A induces superfeminization in the ramshorn snail Marisa cornuarietis(Gastropoda: Prosobranchia) at environmentally relevant concentrations. Environ Health Perspect 114(Suppl 1):127–133. https://doi.org/10.1289/ehp.8065

    Article  PubMed  Google Scholar 

  5. Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254-255:179–186. https://doi.org/10.1016/j.mce.2006.04.033

    Article  CAS  PubMed  Google Scholar 

  6. Xu J, Huang G, Guo TL (2016) Developmental bisphenol A exposure modulates immune-related diseases. Toxics 4:23. https://doi.org/10.3390/toxics4040023

    Article  CAS  PubMed Central  Google Scholar 

  7. Paulose T, Speroni L, Sonnenschein C, Soto AM (2015) Estrogens in the wrong place at the wrong time: fetal BPA exposure and mammary cancer. Reprod Toxicol (Elmsford NY) 54:58–65. https://doi.org/10.1016/j.reprotox.2014.09.012

    Article  CAS  Google Scholar 

  8. Staples CA, Dome PB, Klecka GM, Oblock ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173. https://doi.org/10.1016/s0045-6535(97)10133-3

    Article  CAS  PubMed  Google Scholar 

  9. Fu P, Kawamura K (2010) Ubiquity of bisphenol A in the atmosphere. Environ Pollut 158:3138–3143. https://doi.org/10.1016/j.envpol.2010.06.040

    Article  CAS  PubMed  Google Scholar 

  10. Michałowicz J (2014) Bisphenol A – Sources, toxicity and biotransformation. Environ Toxicol Pharmacol 37:738–758. https://doi.org/10.1016/j.etap.2014.02.003

    Article  CAS  PubMed  Google Scholar 

  11. Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Bisphenol A in hazardous waste landfill leachates. Chemosphere 42:415–418. https://doi.org/10.1016/s0045-6535(00)00079-5

    Article  CAS  PubMed  Google Scholar 

  12. Dhiman P, Naushad M, Batoo KM, Kumar A, Sharma G, Ghfar AA, Kumar G, Singh M (2017) Nano Fe x Zn 1 − x O as a tuneable and efficient photocatalyst for solar powered degradation of bisphenol A from aqueous environment. J Clean Prod 165:1542–1556. https://doi.org/10.1016/j.jclepro.2017.07.245

    Article  CAS  Google Scholar 

  13. Zhai Y, Dai Y, Guo J, Zhou L, Chen M, Yang H, Peng L (2020) Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation. J Colloid Interface Sci 560:111–121. https://doi.org/10.1016/j.jcis.2019.08.065

    Article  CAS  PubMed  Google Scholar 

  14. Wu M, He X, Jing B, Wang T, Wang C, Qin Y, Ao Z, Wang S, An T (2020) Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light. J Hazard Mater 384:121323. https://doi.org/10.1016/j.jhazmat.2019.121323

    Article  CAS  PubMed  Google Scholar 

  15. Xuan YJ, Endo Y, Fujimoto K (2002) Oxidative degradation of bisphenol A by crude enzyme prepared from potato. J Agric Food Chem 50:6575–6578. https://doi.org/10.1021/jf0205918

    Article  CAS  PubMed  Google Scholar 

  16. Wang W, Yu H, Qin H, Long Y, Ye J, Qu Y (2020) Bisphenol A degradation pathway and associated metabolic networks in Escherichia coli harboring the gene encoding CYP450. J Hazard Mater 388:121737. https://doi.org/10.1016/j.jhazmat.2019.121737

    Article  CAS  PubMed  Google Scholar 

  17. Sarma H, Nava AR, Manriquez AME, Dominguez DC, Lee W-Y (2019) Biodegradation of bisphenol A by bacterial consortia isolated directly from river sediments. Environ Technol Innov 14:100314. https://doi.org/10.1016/j.eti.2019.01.008

    Article  Google Scholar 

  18. Bhatia D, Datta D (2019) Removal of bisphenol-a using amine-modified magnetic multiwalled carbon nanotubes: batch and column studies. J Chem Eng Data 64:2877–2887. https://doi.org/10.1021/acs.jced.9b00240

    Article  CAS  Google Scholar 

  19. Gupta VK, Agarwal S, Sadegh H, Ali GAM, Bharti AK, Hamdy Makhlouf AS (2017) Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. J Mol Liq 237:466–472. https://doi.org/10.1016/j.molliq.2017.04.113

    Article  CAS  Google Scholar 

  20. Lee JH, Kwak SY (2019) Rapid adsorption of bisphenol A from wastewater by β-cyclodextrin-functionalized mesoporous magnetic clusters. Appl Surf Sci 467-468:178–184. https://doi.org/10.1016/j.apsusc.2018.10.054

    Article  CAS  Google Scholar 

  21. Pahigian JM, Zuo Y (2018) Occurrence, endocrine-related bioeffects and fate of bisphenol A chemical degradation intermediates and impurities: a review. Chemosphere 207:469–480. https://doi.org/10.1016/j.chemosphere.2018.05.117

    Article  CAS  PubMed  Google Scholar 

  22. Reddy PVL, Kim K-H, Kavitha B, Kumar V, Raza N, Kalagara S (2018) Photocatalytic degradation of bisphenol A in aqueous media: a review. J Environ Manag 213:189–205. https://doi.org/10.1016/j.jenvman.2018.02.059

    Article  CAS  Google Scholar 

  23. Husain Q, Qayyum S (2013) Biological and enzymatic treatment of bisphenol A and other endocrine disrupting compounds: a review. Crit Rev Biotechnol 33:260–292. https://doi.org/10.3109/07388551.2012.694409

    Article  CAS  PubMed  Google Scholar 

  24. Esvandi Z, Foroutan R, Mirjalili M, Sorial GA, Ramavandi B (2019) Physicochemical behavior of Penaeuse semisulcatuse chitin for Pb and Cd removal from aqueous environment. J Polym Environ 27(2):263–274. https://doi.org/10.1007/s10924-018-1345-x

    Article  CAS  Google Scholar 

  25. Foroutan R, Mohammadi R, Adeleye AS, Farjadfard S, Esvandi Z, Arfaeinia H, Sorial GA, Ramavandi B, Sahebi S (2019) Efficient arsenic (V) removal from contaminated water using natural clay and clay composite adsorbents. Environ Sci Pollut Res 26(29):29748–29762. https://doi.org/10.1007/s11356-019-06070-5

    Article  CAS  Google Scholar 

  26. Foroutan R, Mohammadi R, Ramavandi B (2019) Elimination performance of methylene blue, methyl violet, and Nile blue from aqueous media using AC/CoFe 2 O 4 as a recyclable magnetic composite. Environ Sci Pollut Res 26(19):19523–19539. https://doi.org/10.1007/s11356-019-05282-z

    Article  CAS  Google Scholar 

  27. Foroutan R, Mohammadi R, Ramavandi B, Bastanian M (2018) Removal characteristics of chromium by activated carbon/CoFe 2 O 4 magnetic composite and Phoenix dactylifera stone carbon. Korean J Chem Eng 35(11):2207–2219. https://doi.org/10.1007/s11814-018-0145-2

    Article  CAS  Google Scholar 

  28. Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14. https://doi.org/10.1016/j.partic.2016.06.001

    Article  CAS  Google Scholar 

  29. Mehta D, Mazumdar S, Singh SK (2015) Magnetic adsorbents for the treatment of water/wastewater—a review. J Water Process Eng 7:244–265. https://doi.org/10.1016/j.jwpe.2015.07.001

    Article  Google Scholar 

  30. Yamaura M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279:210–217. https://doi.org/10.1016/j.jmmm.2004.01.094

    Article  CAS  Google Scholar 

  31. Dong A, Lan S, Huang J, Wang T, Zhao T, Xiao L, Wang W, Zheng X, Liu F, Gao G, Chen Y (2011) Modifying Fe3O4-functionalized nanoparticles with N-halamine and their magnetic/antibacterial properties. ACS Appl Mater Interfaces 3:4228–4235. https://doi.org/10.1021/am200864p

    Article  CAS  PubMed  Google Scholar 

  32. Zhang F, Braun GB, Pallaoro A, Zhang Y, Shi Y, Cui D, Moskovits M, Zhao D, Stucky GD (2011a) Mesoporous multifunctional upconversion luminescent and magnetic “nanorattle” materials for targeted chemotherapy. Nano Lett 12:61–67. https://doi.org/10.1021/nl202949y

    Article  CAS  PubMed  Google Scholar 

  33. Zhang K, Chen H-L, Albela B, Jiang J-G, Wang Y-M, He M-Y, Bonneviot L (2011b) High-temperature synthesis and formation mechanism of stable, ordered MCM-41 silicas by using surfactant cetyltrimethylammonium tosylate as template. Eur J Inorg Chem 2011:59–67. https://doi.org/10.1002/ejic.201000754

    Article  CAS  Google Scholar 

  34. Cao D, Jin X, Gan L, Wang T, Chen Z (2016) Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant. Chemosphere 159:23–31. https://doi.org/10.1016/j.chemosphere.2016.05.080

    Article  CAS  PubMed  Google Scholar 

  35. Guo J, Chen S, Liu L, Li B, Yang P, Zhang L, Feng Y (2012) Adsorption of dye from wastewater using chitosan–CTAB modified bentonites. J Colloid Interface Sci 382:61–66. https://doi.org/10.1016/j.jcis.2012.05.044

    Article  CAS  PubMed  Google Scholar 

  36. Wang S, Zhao Q, Wei H, Wang J-Q, Cho M, Cho HS, Terasaki O, Wan Y (2013) Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts. J Am Chem Soc 135:11849–11860. https://doi.org/10.1021/ja403822d

    Article  CAS  PubMed  Google Scholar 

  37. Fang X, Chen C, Liu Z, Liu P, Zheng N (2011) A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale 3:1632–1639. https://doi.org/10.1039/c0nr00893a

    Article  CAS  PubMed  Google Scholar 

  38. Mardani HR (2017) (Cu/Ni)–Al layered double hydroxides@Fe3O4 as efficient magnetic nanocomposite photocatalyst for visible-light degradation of methylene blue. Res Chem Intermed 43:5795–5810. https://doi.org/10.1007/s11164-017-2963-y

    Article  CAS  Google Scholar 

  39. Samarghandi MR, Al-Musawi TJ, Mohseni-Bandpi A, Zarrabi M (2015) Adsorption of cephalexin from aqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J Mol Liq 211:431–441. https://doi.org/10.1016/j.molliq.2015.06.067

    Article  CAS  Google Scholar 

  40. Dehghani MH, Sanaei D, Ali I, Bhatnagar A (2016) Removal of chromium(VI) from aqueous solution using treated waste newspaper as a low-cost adsorbent: kinetic modeling and isotherm studies. J Mol Liq 215:671–679. https://doi.org/10.1016/j.molliq.2015.12.057

    Article  CAS  Google Scholar 

  41. Zhang K, Li H, Xu X, Yu H (2018) Synthesis of reduced graphene oxide/NiO nanocomposites for the removal of Cr(VI) from aqueous water by adsorption. Microporous Mesoporous Mater 255:7–14. https://doi.org/10.1016/j.micromeso.2017.07.037

    Article  CAS  Google Scholar 

  42. Li K, Zeng Z, Xiong J, Yan L, Guo H, Liu S, Dai Y, Chen T (2015) Fabrication of mesoporous Fe3O4@SiO2@CTAB–SiO2 magnetic microspheres with a core/shell structure and their efficient adsorption performance for the removal of trace PFOS from water. Colloids Surf A Physicochem Eng Asp 465:113–123. https://doi.org/10.1016/j.colsurfa.2014.10.044

    Article  CAS  Google Scholar 

  43. Zandipak R, Sobhanardakani S (2018) Novel mesoporous Fe3O4/SiO2/CTAB–SiO2 as an effective adsorbent for the removal of amoxicillin and tetracycline from water. Clean Techn Environ Policy 20:871–885. https://doi.org/10.1007/s10098-018-1507-5

    Article  CAS  Google Scholar 

  44. Tsai WT, Lai CW, Su TY (2006) Adsorption of bisphenol-a from aqueous solution onto minerals and carbon adsorbents. J Hazard Mater 134:169–175. https://doi.org/10.1016/j.jhazmat.2005.10.055

    Article  CAS  PubMed  Google Scholar 

  45. Guo S, Huang L, Li W, Wang Q, Wang W, Yang Y (2019) Willow tree-like functional groups modified magnetic nanoparticles for ultra-high capacity adsorption of dye. J Taiwan Inst Chem Eng 101:99–104. https://doi.org/10.1016/j.jtice.2019.04.041

    Article  CAS  Google Scholar 

  46. Najafi F, Moradi O, Rajabi M, Asif M, Tyagi I, Agarwal S, Gupta VK (2015) Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide. J Mol Liq 208:106–113. https://doi.org/10.1016/j.molliq.2015.04.033

    Article  CAS  Google Scholar 

  47. Fathi MR, Asfaram A, Farhangi A (2015) Removal of Direct Red 23 from aqueous solution using corn stalks: Isotherms, kinetics and thermodynamic studies. Spectrochim Acta A Mol Biomol Spectrosc 135:364–372. https://doi.org/10.1016/j.saa.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  48. Foroutan R, Mohammadi R, MousaKhanloo F, Sahebi S, Ramavandi B, Kumar PS, Vardhan KH (2020) Performance of montmorillonite/graphene oxide/CoFe2O4 as a magnetic and recyclable nanocomposite for cleaning methyl violet dye-laden wastewater. Adv Powder Technol 31(9):3993–4004. https://doi.org/10.1016/j.apt.2020.08.001

    Article  CAS  Google Scholar 

  49. Foroutan R, Peighambardoust SJ, Mohammadi R, Omidvar M, Sorial GA, Ramavandi B (2020) Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: adaptive neuro-fuzzy inference modeling. Int J Biol Macromol 151:355–365. https://doi.org/10.1016/j.ijbiomac.2020.02.202

    Article  CAS  PubMed  Google Scholar 

  50. Peighambardoust SJ, Bavil OA, Foroutan R, Arsalani N (2020) Removal of malachite green using carboxymethyl cellulose-g-polyacrylamide/montmorillonite nanocomposite hydrogel. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.05.093

  51. Ding Y, Xu Y, Ding B, Li Z, Xie F, Zhang F, Wang H, Liu J, Wang X (2017) Structure induced selective adsorption performance of ZIF-8 nanocrystals in water. Colloids Surf A Physicochem Eng Asp 520:661–667. https://doi.org/10.1016/j.colsurfa.2017.02.012

    Article  CAS  Google Scholar 

  52. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/s0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  53. Foroutan R, Mohammadi R, Peighambardoust SJ, Jalali S, Ramavandi B (2020) Application of nano-silica particles generated from offshore white sandstone for cadmium ions elimination from aqueous media. Environ Technol Innov 19:101031. https://doi.org/10.1016/j.eti.2020.101031

    Article  Google Scholar 

  54. Savari A, Hashemi S, Arfaeinia H, Dobaradaran S, Foroutan R, Mahvi AH, Fouladvand M, Sorial GA, Farjadfard S, Ramavandi B (2020) Physicochemical characteristics and mechanism of fluoride removal using powdered zeolite-zirconium in modes of pulsed & continuous sonication and stirring. Adv Powder Technol 31(8):3521–3532. https://doi.org/10.1016/j.apt.2020.06.039

    Article  CAS  Google Scholar 

  55. Foroutan R, Peighambardoust SJ, Aghdasinia H, Mohammadi R, Ramavandi B (2020) Modification of bio-hydroxyapatite generated from waste poultry bone with MgO for purifying methyl violet-laden liquids. Environ Sci Pollut Res:1–12. https://doi.org/10.1007/s11356-020-10330-0

  56. Ahmadi A, Foroutan R, Esmaeili H, Tamjidi S (2020) The role of bentonite clay and bentonite clay@ MnFe2O4 composite and their physico-chemical properties on the removal of Cr (III) and Cr (VI) from aqueous media. Environ Sci Pollut Res:1–14. https://doi.org/10.1007/s11356-020-07756-x

  57. Dehghani MH, Mahvi AH, Rastkari N, Saeedi R, Nazmara S, Iravani E (2015) Adsorption of bisphenol A (BPA) from aqueous solutions by carbon nanotubes: kinetic and equilibrium studies. Desalin Water Treat 54:84–92. https://doi.org/10.1080/19443994.2013.876671

    Article  CAS  Google Scholar 

  58. Mphahlele K, Onyango MS, Mhlanga SD (2015) Adsorption of aspirin and paracetamol from aqueous solution using Fe/N-CNT/β-cyclodextrin nanocomopsites synthesized via a benign microwave assisted method. J Environ Chem Eng 3:2619–2630. https://doi.org/10.1016/j.jece.2015.02.018

    Article  CAS  Google Scholar 

  59. Xu J, Wang L, Zhu Y (2012) Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28:8418–8425. https://doi.org/10.1021/la301476p

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank American Journal Experts (AJE) for English language editing.

Funding

This study was funded by the Post-graduate’s Innovation Fund Project of Hebei Province (CXZZBS2019022); the National Natural Science Foundation of China (grant numbers 21377033, NSFC); the Natural Science Foundation of Hebei Province (B2018201224); and the Natural Science Foundation of Hebei Province, General Program (E2020201036).

Author information

Authors and Affiliations

Authors

Contributions

Yichao Gong designed the study, performed the experiments, analyzed the data, and wrote the manuscript; Guisui Liu, Qianqian Wang, Aixue Zhu, and Qiuhua Wu provided the resources; Pengyan Liu provided funding acquisition, project administration, supervision, and writing—review and editing.

Corresponding author

Correspondence to Pengyan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Liu, G., Wang, Q. et al. Synthesis of a novel mesoporous Fe3O4@SiO2/CTAB-SiO2 composite material and its application in the efficient removal of bisphenol A from water. Colloid Polym Sci 299, 807–822 (2021). https://doi.org/10.1007/s00396-020-04801-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04801-6

Keywords

Navigation