Skip to main content
Log in

Synergistic effect of 2D/0D mixed graphitic carbon nitride/Fe2O3 on the excellent corrosion behavior of epoxy-based waterborne coatings

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polydopamine (PDA) functionalized graphitic carbon nitride nanosheets (PDCN) and α-Fe2O3 nanoparticles (PDFe) were synthesized and characterized by FT-IR, XRD, TGA, XPS, and TEM. The complementary fillers of two-dimensional PDCN and zero-dimensional PDFe incorporated into waterborne epoxy (WEP) greatly improve the corrosion protect properties of composite coating, which was demonstrated through electrochemical impedance spectroscopy (EIS) and macroscopic surface morphology. Results showed that PDA modified g-C3N4 and α-Fe2O3 composite fillers (PDCN/Fe) have much superior synergistic effect on the improved barrier function of coatings than pure mixture of g-C3N4 and α-Fe2O3 (CN/Fe). This research indicates that the synergistic effect of nanofillers of different dimensions can be greatly stimulated by the good dispersibility in matrix, which has significant potential in improving corrosion protection properties of composite coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bhat SI, Ahmad S (2018) Castor oil-TiO2 hyperbranched poly (ester amide) nanocomposite: a sustainable, green precursor-based anticorrosive nanocomposite coatings. Progress in Organic Coatings 123:326–336. https://doi.org/10.1016/j.porgcoat.2018.06.010

    Article  CAS  Google Scholar 

  2. Li W, Shi L, Zhang J, Cheng J, Wang X (2020) Double-layered surface decoration of flaky aluminum pigments with zinc aluminum phosphate and phytic acid–aluminum complexes for high-performance waterborne coatings. Powder Technol 362:462–473. https://doi.org/10.1016/j.powtec.2019.11.097

    Article  CAS  Google Scholar 

  3. Hu C, Li Y, Ding Y (2017) Preparation and characterization of poly(o-anisidine)/SiC composites and study of their corrosion resistances blended with epoxy resin. Colloid Polym Sci 295(10):1937–1950. https://doi.org/10.1007/s00396-017-4152-3

    Article  CAS  Google Scholar 

  4. Zhong F, He Y, Wang P, Chen C, Yu H, Li H, Chen J (2020) Graphene/V2O5@polyaniline ternary composites enable waterborne epoxy coating with robust corrosion resistance. React Funct Polym 151:104567. https://doi.org/10.1016/j.reactfunctpolym.2020.104567

    Article  CAS  Google Scholar 

  5. Deng Y, Zhou C, Zhang Q, Zhang M, Zhang H (2019) Structure and performance of waterborne polyurethane-acrylate composite emulsions for industrial coatings: effect of preparation methods. Colloid Polym Sci 298(2):139–149. https://doi.org/10.1007/s00396-019-04583-6

    Article  CAS  Google Scholar 

  6. Arabpour A, Shockravi A, Rezania H, Farahati R (2020) Investigation of anticorrosive properties of novel silane-functionalized polyamide/GO nanocomposite as steel coatings. Surf Interf:18. https://doi.org/10.1016/j.surfin.2020.100453

  7. Wang H, Qin X, Fei G, Tian M, Wen H, Zhu K (2018) Optimization of stability and properties of waterborne polyaniline-graft-poly (vinyl alcohol) nanocomposites with controllable epoxy content. Colloid Polym Sci 296(3):585–594. https://doi.org/10.1007/s00396-018-4283-1

    Article  CAS  Google Scholar 

  8. Xia Y, He Y, Chen C, Wu Y, Zhong F, Chen J (2020) Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating. React Funct Polym 146:104405. https://doi.org/10.1016/j.reactfunctpolym.2019.104405

    Article  CAS  Google Scholar 

  9. Chen F, Liu P (2011) Conducting polyaniline nanoparticles and their dispersion for waterborne corrosion protection coatings. ACS Appl Mater Interfaces 3(7):2694–2702. https://doi.org/10.1021/am200488m

    Article  CAS  PubMed  Google Scholar 

  10. Liu S, Gu L, Zhao H, Chen J, Yu H (2016) Corrosion resistance of graphene-reinforced waterborne epoxy coatings. Journal of Materials Science & Technology 32(5):425–431. https://doi.org/10.1016/j.jmst.2015.12.017

    Article  CAS  Google Scholar 

  11. Chen J, Lu H, Chen Y, Tao Z, Shao M (2017) Stable aqueous dispersion of polymer functionalized graphene sheets from electrochemical exfoliation for anticorrosion application. Colloid Polym Sci 295(10):1951–1959. https://doi.org/10.1007/s00396-017-4173-y

    Article  CAS  Google Scholar 

  12. An K, Peng S, Yang C, Qing Y, Hu C, Wang L, Liu C (2019) Covalent modification of graphene oxide by 4,4′-methylenebis (phenyl isocyanate) to enhance corrosion resistance of polystyrene coating. Colloid Polym Sci 297(6):839–848. https://doi.org/10.1007/s00396-019-04500-x

    Article  CAS  Google Scholar 

  13. Jing L-C, Wang T, Cao W-W, Wen J-G, Zhao H, Ning Y-J, Yuan X-T, Tian Y, Teng L-H, Geng H-Z (2020) Water-based polyurethane composite anticorrosive barrier coating via enhanced dispersion of functionalized graphene oxide in the presence of acidified multi-walled carbon nanotubes. Prog Organic Coat 146. https://doi.org/10.1016/j.porgcoat.2020.105734

  14. Cui M, Ren S, Chen J, Liu S, Zhang G, Zhao H, Wang L, Xue Q (2017) Anticorrosive performance of waterborne epoxy coatings containing water-dispersible hexagonal boron nitride (h-BN) nanosheets. Appl Surf Sci 397:77–86. https://doi.org/10.1016/j.apsusc.2016.11.141

    Article  CAS  Google Scholar 

  15. Hu S, Muhammad M, Wang M, Ma R, Du A, Fan Y, Cao X, Zhao X (2020) Corrosion resistance performance of nano-MoS2-containing zinc phosphate coating on Q235 steel. Mater Lett 265:127256. https://doi.org/10.1016/j.matlet.2019.127256

    Article  CAS  Google Scholar 

  16. Zhang X, Wang H, Zhang X, Zhao Z, Zhu Y (2019) A multifunctional super-hydrophobic coating based on PDA modified MoS2 with anti-corrosion and wear resistance. Colloids Surf A Physicochem Eng Asp 568:239–247. https://doi.org/10.1016/j.colsurfa.2019.02.016

    Article  CAS  Google Scholar 

  17. Jeon H, Park J, Shon M (2013) Corrosion protection by epoxy coating containing multi-walled carbon nanotubes. J Ind Eng Chem 19(3):849–853. https://doi.org/10.1016/j.jiec.2012.10.030

    Article  CAS  Google Scholar 

  18. Zeybek B, Aksun E, Üğe A (2015) Investigation of corrosion protection performance of poly(N-methylpyrrole)-dodecylsulfate/multi-walled carbon nanotubes composite coatings on the stainless steel. Mater Chem Phys 163:11–23. https://doi.org/10.1016/j.matchemphys.2015.06.022

    Article  CAS  Google Scholar 

  19. Behzadnasab M, Mirabedini SM, Kabiri K, Jamali S (2011) Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corros Sci 53(1):89–98. https://doi.org/10.1016/j.corsci.2010.09.026

    Article  CAS  Google Scholar 

  20. Rahman O, Ahmad S (2014) Physico-mechanical and electrochemical corrosion behavior of soy alkyd/Fe3O4 nanocomposite coatings. RSC Adv 4(29):14936–14947. https://doi.org/10.1039/c3ra48068b

    Article  CAS  Google Scholar 

  21. Ghosal A, Iqbal S, Ahmad S (2019) NiO nanofiller dispersed hybrid soy epoxy anticorrosive coatings. Progress in Organic Coatings 133:61–76. https://doi.org/10.1016/j.porgcoat.2019.04.029

    Article  CAS  Google Scholar 

  22. Lenz DM, Delamar M, Ferreira CA (2003) Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel. J Electroanal Chem 540:35–44. https://doi.org/10.1016/s0022-0728(02)01272-x

    Article  CAS  Google Scholar 

  23. Brickweg LJ, Floryancic BR, Sapper ED, Fernando RH (2007 Shear-induced 1-D alignment of alumina nanoparticles in coatings.J Coat Technol Res 4, 107–110. https://doi.org/10.1007/s11998-007-9002-7

  24. Dhoke SK, Khanna AS (2009) Effect of nano-Fe2O3 particles on the corrosion behavior of alkyd based waterborne coatings. Corros Sci 51(1):6–20. https://doi.org/10.1016/j.corsci.2008.09.028

    Article  CAS  Google Scholar 

  25. Touazi Y, Abdi A, Leshaf A, Khimeche K (2020) Influence of heat treatment of iron oxide on its effectiveness as anticorrosion pigment in epoxy based coatings. Progress in Organic Coatings 139. https://doi.org/10.1016/j.porgcoat.2019.105458

  26. Liu T, Liu Y, Ye Y, Li J, Yang F, Zhao H, Wang L (2019) Corrosion protective properties of epoxy coating containing tetraaniline modified nano-α-Fe2O3. Progress in Organic Coatings 132:455–467. https://doi.org/10.1016/j.porgcoat.2019.04.010

    Article  CAS  Google Scholar 

  27. Yang F, Liu D, Li Y, Cheng L, Ye J (2019) Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production. Appl Catal B Environ 240:64–71. https://doi.org/10.1016/j.apcatb.2018.08.072

    Article  CAS  Google Scholar 

  28. Cao Q, Kumru B, Antonietti M, Schmidt BVKJ (2020) Graphitic carbon nitride and polymers: a mutual combination for advanced properties. Materials Horizons 7(3):762–786. https://doi.org/10.1039/c9mh01497g

    Article  CAS  Google Scholar 

  29. Miao J, Geng W, Alvarez PJJ, Long M (2020) 2D N-doped porous carbon derived from polydopamine-coated graphitic carbon nitride for efficient nonradical activation of peroxymonosulfate. Environmental Science & Technology 54(13):8473–8481. https://doi.org/10.1021/acs.est.0c03207

    Article  CAS  Google Scholar 

  30. Kumru B, Barrio J, Zhang J, Antonietti M, Shalom M, Schmidt BVKJ (2019) Robust carbon nitride-based thermoset coatings for surface modification and photochemistry. ACS Appl Mater Interfaces 11(9):9462–9469. https://doi.org/10.1021/acsami.8b21670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karjule N, Phatake R, Volokh M, Hod I, Shalom M (2019) Solution-processable carbon nitride polymers for photoelectrochemical applications. Small Methods 3(12):1900401. https://doi.org/10.1002/smtd.201900401

    Article  CAS  Google Scholar 

  32. Xia Y, He Y, Chen C, Wu Y, Zhong F, Chen J (2020) Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating. React Funct Polym 146:104405. https://doi.org/10.1016/j.reactfunctpolym.2019.104405

    Article  CAS  Google Scholar 

  33. Cui M, Ren S, Zhao H, Xue Q, Wang L (2018) Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating. Chem Eng J 335:255–266. https://doi.org/10.1016/j.cej.2017.10.172

    Article  CAS  Google Scholar 

  34. Guo L, Liu Q, Li G, Shi J, Liu J, Wang T, Jiang G (2012) A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale 4(19):5864–5867. https://doi.org/10.1039/c2nr31547e

    Article  CAS  PubMed  Google Scholar 

  35. Ling Y, Li W, Wang B, Gan W, Zhu C, Brady MA, Wang C (2016) Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness. RSC Adv 6(37):31037–31045. https://doi.org/10.1039/c5ra26539h

    Article  CAS  Google Scholar 

  36. Cheng L, Liu C, Han D, Ma S, Guo W, Cai H, Wang X (2019) Effect of graphene on corrosion resistance of waterborne inorganic zinc-rich coatings. J Alloys Compd 774:255–264. https://doi.org/10.1016/j.jallcom.2018.09.315

    Article  CAS  Google Scholar 

  37. Thaweesak S, Lyu M, Peerakiatkhajohn P, Butburee T, Luo B, Chen H, Wang L (2017) Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution. Appl Catal B Environ 202:184–190. https://doi.org/10.1016/j.apcatb.2016.09.022

    Article  CAS  Google Scholar 

  38. Ping N, Lili Z, Gang L, Hui-Ming C, Materials CJAF (2012) Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities. Advanced Functional Materials 22 (22):4763–4770. https://doi.org/10.1002/adfm.201200922

  39. Ramezanzadeh B, Ahmadi A, Mahdavian M (2016) Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros Sci 109:182–205. https://doi.org/10.1016/j.corsci.2016.04.004

    Article  CAS  Google Scholar 

  40. Xi Z-Y, Xu Y-Y, Zhu L-P, Wang Y, Zhu B-K (2009) A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly (DOPA) and poly(dopamine). J Membr Sci 327(1–2):244–253. https://doi.org/10.1016/j.memsci.2008.11.037

    Article  CAS  Google Scholar 

  41. Yah WO, Xu H, Soejima H, Ma W, Lvov Y, Takahara A (2012) Biomimetic dopamine derivative for selective polymer modification of halloysite nanotube lumen. J Am Chem Soc 134(29):12134–12137. https://doi.org/10.1021/ja303340f

    Article  CAS  PubMed  Google Scholar 

  42. Ramezanzadeh B, Ahmadi A, Mahdavian M (2016) Enhancement of the corrosion protection performance and cathodic delamination resistance of epoxy coating through treatment of steel substrate by a novel nanometric sol-gel based silane composite film filled with functionalized graphene oxide nanosheets. Corros Sci 109:182–205. https://doi.org/10.1016/j.corsci.2016.04.004

    Article  CAS  Google Scholar 

  43. Ma TY, Tang Y, Dai S, Qiao SZ (2014) Proton-functionalized two-dimensional graphitic carbon nitride nanosheet: an excellent metal-/label-free biosensing platform. Small 10(12):2382–2389. https://doi.org/10.1002/smll.201303827

    Article  CAS  PubMed  Google Scholar 

  44. Qin L, Huang D, Xu P, Zeng G, Lai C, Fu Y, Yi H, Li B, Zhang C, Cheng M, Zhou C, Wen X (2019) In-situ deposition of gold nanoparticles onto polydopamine-decorated g-C3N4 for highly efficient reduction of nitroaromatics in environmental water purification. J Colloid Interface Sci 534:357–369. https://doi.org/10.1016/j.jcis.2018.09.051

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Lu H, Chen Y, Tao Z, Shao M (2017) Stable aqueous dispersion of polymer functionalized graphene sheets from electrochemical exfoliation for anticorrosion application. Colloid Polym Sci 295(10):1951–1959. https://doi.org/10.1007/s00396-017-4173-y

    Article  CAS  Google Scholar 

  46. Xu JH, Ye S, Ding CD, Tan LH, Fu JJ (2018) Autonomous self-healing supramolecular elastomer reinforced and toughened by graphitic carbon nitride nanosheets tailored for smart anticorrosion coating applications. J Mater Chem A 6(14):5887–5898. https://doi.org/10.1039/c7ta09841c

    Article  CAS  Google Scholar 

  47. Xia Z, Liu G, Dong Y, Zhang Y (2019) Anticorrosive epoxy coatings based on polydopamine modified molybdenum disulfide. Progress in Organic Coatings 133:154–160. https://doi.org/10.1016/j.porgcoat.2019.04.056

    Article  CAS  Google Scholar 

  48. Ramezanzadeh B, Ghasemi E, Mahdavian M, Changizi E, Mohamadzadeh Moghadam MH (2015) Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings. Carbon 93:555–573. https://doi.org/10.1016/j.carbon.2015.05.094

    Article  CAS  Google Scholar 

Download references

Funding

This study received funding from ‘Xinxing Casting Pipe Co., Ltd., Hebei Province.’

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, C., Cheng, L., Chen, X. et al. Synergistic effect of 2D/0D mixed graphitic carbon nitride/Fe2O3 on the excellent corrosion behavior of epoxy-based waterborne coatings. Colloid Polym Sci 299, 883–897 (2021). https://doi.org/10.1007/s00396-020-04799-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04799-x

Keywords

Navigation