Skip to main content
Log in

Investigation about validity of the Derjaguin approximation for electrostatic interactions for a sphere-sphere system

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Validity of the Derjaguin approximation for sphere-sphere electrostatic interactions is investigated by explicitly determining the interactions between two spherical colloids using classical density functional theory (CDFT) solved in bispherical coordinates. The validity rules are summarized as follows. (i) For 1:1 type electrolyte, the Derjaguin approximation is effective for colloid sphere having a diameter down to three times the ion diameter only if the bulk concentration is higher than 0.1 M. (ii) With presence of higher-valence counter-ion, the threshold value bulk concentration rises, and increasing the colloid sphere diameter can lower greatly the threshold value bulk concentration. Encouragingly, over the valid parameter region of the Derjaguin approximation a like-charge attraction can be reproduced accurately. (iii) Both too low and too high surface charge strengths contribute to lower the quality of the Derjaguin approximation; increasing the medium permittivity or system temperature improves the accuracy of the Derjaguin approximation. (iv) Based on the mechanism analysis on the above observations, it is concluded that what matters in determining the validity of the Derjaguin approximation is the potential range of the pure inter-surface electrostatic interactions and the local Debye length rather than the bulk Debye length. Besides, the different expressivity of the influencing factors causing the effective inter-surface electrostatic interactions at different conditions determines the behavior the Derjaguin approximation deviates from the full CDFT calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valadez-Perez NE, Benavides AL, Schoell-Paschinger E, Castaneda-Priego R (2012). J Chem Phys 137:084905

    Article  CAS  PubMed  Google Scholar 

  2. Piechowiak MA, Videcoq A, Ferrando R, Bochicchio D, Pagnoux C, Rossignol F (2012). PhysChemChemPhys 14:1431

    CAS  Google Scholar 

  3. Prestipino S, Munao G, Costa D, Pellicane G, Caccamo C (2017). J Chem Phys 147:144902

    Article  CAS  PubMed  Google Scholar 

  4. Rovigatti L, Bianco V, Tavares JM, Sciortino F (2017). J Chem Phys 146:041103

    Article  CAS  PubMed  Google Scholar 

  5. Jehannin M, Charton S, Corso B, Moehwald H, Riegler H, Zemb T (2017). Colloid Polym Sci 295:1817

    Article  CAS  Google Scholar 

  6. Ohshima H (2017). Colloid Polym Sci 295:543

    Article  CAS  Google Scholar 

  7. Lyulin SV (2017). Chem Phys Lett 667:296

    Article  CAS  Google Scholar 

  8. Huang Y, Yamaguchi A, Pham TD, Kobayashi M (2018). Colloid Polym Sci 296:145

    Article  CAS  Google Scholar 

  9. Harshe YM, Lattuada M (2012). Langmuir 28:283

    Article  CAS  PubMed  Google Scholar 

  10. Colberg PH, Kapral R (2017). J Chem Phys 147:064910

    Article  CAS  PubMed  Google Scholar 

  11. Semeraro EF, Dattani R, Narayanan T (2018). J Chem Phys 148:014904

    Article  CAS  PubMed  Google Scholar 

  12. Gaspard P (2017) J Stat Mech-Theory E paper ID/:024003

  13. Adamczyk Z, Weronski P (1999). Adv Colloid Interf Sci 83:137

    Article  CAS  Google Scholar 

  14. Shen CY, Li BG, Wang C, Huang YF, Jin Y (2011). Vadose Zone J 10:1071

    Article  CAS  Google Scholar 

  15. Masciopinto C, Visino F (2017). Water Res 126:240

    Article  CAS  PubMed  Google Scholar 

  16. Galindo-Murillo R, Ruiz-Azuara L, Moreno-Esparza R, Cortes-Guzman F (2012). PhysChemChemPhys 14:15539

    CAS  Google Scholar 

  17. Minh DDL (2012). J Chem Phys 137:104106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pandey RB, Jacobs DJ, Farmer BL (2017). J Chem Phys 146:195101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Molina R et al (2012). Nucleic Acids Res 40:6936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Niranjani G, Murugan R (2016) J Stat Mech-Theory E Paper ID/:053501

  21. Erbas A, de la Cruz MO, Marko JF (2018). Phys Rev E 97:022405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Antonietta M (2001). Int J Mol Med 8:S32

    Google Scholar 

  23. Ukmar T, Gaberscek M, Merzel F, Godec A (2011). PhysChemChemPhys 13:15311

    CAS  Google Scholar 

  24. Rathee VS, Zervoudakis AJ, Sidky H, Sikora BJ, Whitmer JK (2018). J Chem Phys 148:114901

    Article  CAS  PubMed  Google Scholar 

  25. Wang JH, Bratko D, Luzar A (2011). J Stat Phys 145:253

    Article  CAS  Google Scholar 

  26. Groenewald F, Esterhuysen C, Dillen J (2012). Theor Chem Accounts 131:1281

    Article  CAS  Google Scholar 

  27. Songolzadeh R, Moghadasi J (2017). Colloid Polym Sci 295:145

    Article  CAS  Google Scholar 

  28. Goto K, Sakata S, Moritani K, Inui N (2017). Physica A 466:511

    Article  CAS  Google Scholar 

  29. Benavides AL, Portillo MA, Abascal JLF, Vega C (2017). Mol Phys 115:1301

    Article  CAS  Google Scholar 

  30. Derjaguin BH (1934). Kolloid Z 69:155

    Article  Google Scholar 

  31. Blocki J, Randrup J, Swiatecki WJ, Tsang CF (1977). Ann Phys – N Y 427:105

    Google Scholar 

  32. Hans-Jürgen Butt KG, Kappl M (2003) Physics and chemistry of interfaces. Wiley-VCH Verlag & Co. KGaA,

  33. Israelachvili JN (1998) Intermolecular and Surface Forces. Academic, London

    Google Scholar 

  34. Parsegian VA, der Waals V (2006) Forces. Cambridge University Press, Cambridge

    Google Scholar 

  35. Hsu J-P, Kuo Y-C (1997). J Colloid Interface Sci 185:530

    Article  CAS  PubMed  Google Scholar 

  36. Hsu J-P, Liu B-T (1998). J Phys Chem B 102:334

    Article  CAS  Google Scholar 

  37. Hsu J-P, Liu B-T (1999). J Colloid Interface Sci 217:219

    Article  CAS  PubMed  Google Scholar 

  38. Schiller P, Krüger S, Wahab M, Mögel H-J (2011). Langmuir 27:10429

    Article  CAS  PubMed  Google Scholar 

  39. Shen CY, Wang F, Li BG, Jin Y, Wang LP, Huang YF (2012). Langmuir 28:14681

    Article  CAS  PubMed  Google Scholar 

  40. Ohshima H (2017). Colloid Polym Sci 295:289

    Article  CAS  Google Scholar 

  41. Wennerstrom H (2017). PhysChemChemPhys 19:23849

    Google Scholar 

  42. Ether DS, Rosa FSS, Tibaduiza DM, Pires LB, Decca RS, Maia PAM (2018). Phys Rev E 97:022611

    Article  CAS  PubMed  Google Scholar 

  43. Torres-Diaz MA, Bevan (2017). Langmuir 33:4356

    Article  CAS  PubMed  Google Scholar 

  44. Todd BA, Eppell SJ (2004) Probing the Limits of the Derjaguin Approximation with Scanning Force Microscopy, 4897. Langmuir 20:4892

    Article  CAS  PubMed  Google Scholar 

  45. Rentsch S, Pericet-Camara R, Papastavrou G, Borkovec M (2006). PhysChemChemPhys 8:2531

    CAS  Google Scholar 

  46. Carnie SL, Chan DYC, Gunning JS (1994). Langmuir 10:2993

    Article  CAS  Google Scholar 

  47. Sader E, Carnie SL, Chan DYC (1995). J Colloid Interface Sci 171:46

    Article  CAS  Google Scholar 

  48. Stankovich, Carnie SL (1999). J Colloid Interface Sci 329:216

    Google Scholar 

  49. Gotzelmann B, Evans R, Dietrich S (1998) Depletion forces in fluids, 6800. Phys Rev E 57:6785

    Article  CAS  Google Scholar 

  50. Forsman J, Woodward CE (2010) Limitations of the Derjaguin Approximation and the Lorentz−Berthelot Mixing Rule, 4558. Langmuir 26:4555

    Article  CAS  PubMed  Google Scholar 

  51. Quesada-Perez E, Gonzalez-Tovar A, Martin-Molina, Lozada-Cassou M, Hidalgo-Alvarez R (2003). ChemPhysChem 4:235

    Article  CAS  Google Scholar 

  52. Jimenez-Angeles F, Odriozola G, Lozada-Cassou M (2006). J Chem Phys 124:134902

    Article  CAS  PubMed  Google Scholar 

  53. Ghanbarian S, Rottler J (2013). J Chem Phys 138:084901

    Article  CAS  PubMed  Google Scholar 

  54. Shavlov AV, Dzhumandzhi VA (2016). Phys Plasmas 23:103703

    Article  CAS  Google Scholar 

  55. Buyukdagli S (2017). Phys Rev E 95:022502

    Article  PubMed  Google Scholar 

  56. Hansen JP, McDonald IR (2006) Theory of simple liquids3rd edn. Academic, London

    Google Scholar 

  57. Zhou S (2018). Physica A 512:1260

    Article  Google Scholar 

  58. Zhou S, Solana JR (2018). Physica A 493:342

    Article  CAS  Google Scholar 

  59. Valiev GN, Chuev J (2018) Stat. Mech.-Theory E, Paper ID/:093201

  60. Zhou S, Solana JR (2018). Mol Phys 116:491

    Article  CAS  Google Scholar 

  61. Patrykiejew A (2017) J Stat Mech-Theory E, Paper ID/:123208

  62. Zhou S (2018) J Stat Mech-Theory E, Paper ID/:103203

  63. Gouin H, Muracchini A, Ruggeri T (2018). Phys Rev E 97:062152

    Article  PubMed  Google Scholar 

  64. Zhou S (2011) J Stat Mech-Theory E Paper ID/:P05023

  65. Fantoni R (2018) J Stat Mech-Theory E, Paper ID/:043103

  66. Zhou S (2011) J Stat Mech-Theory E Paper ID/:P09001

  67. Henderson D (1992) Fundamentals of inhomogeneous fluids. Marcel Dekker, New York

    Google Scholar 

  68. B. Modak, C. N. Patra, S. K. Ghosh, and J. Vijayasundar, Mol Phys 109, 639(2011)

  69. Zhou S, Zhang M (2017). J Phys Chem Solids 103:123

    Article  CAS  Google Scholar 

  70. Zhou S, Lamperski S, Zydorczak M (2014) Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations. J Chem Phys 141:064701

    Article  CAS  PubMed  Google Scholar 

  71. Zhou S, Lamperski S, Sokołowska M (2017) J Stat Mech-Theory E, Paper ID/:073207

  72. Zhou S (2013) Novel anomalies for like-charged attraction between curved surfaces and formulation of a hydrogen bonding style mechanism. AIP Adv 3:032109

    Article  CAS  Google Scholar 

  73. Zhou S (2015). Phys Rev E 92:052317

    Article  CAS  Google Scholar 

  74. Zhou S (2015) J Stat Mech-Theory E Paper ID/:P11030

  75. Zhou S (2016). J Phys Chem Solids 89:53

    Article  CAS  Google Scholar 

  76. Zhou S (2017) Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale, 1037. J Stat Phys 169:1019

    Article  Google Scholar 

  77. Zhou S (2017). J Phys Chem Solids 110:274

    Article  CAS  Google Scholar 

  78. Zhou S (2018) Wetting Transition of Nonpolar Neutral Molecule System on a Neutral and Atomic Length Scale Roughness Substrate, 998. J Stat Phys 170:979

    Article  CAS  Google Scholar 

  79. Zhou S (2011) Enhanced KR-Fundamental Measure Functional for Inhomogeneous Binary and Ternary Hard Sphere Mixtures, 58. Commun Theor Phys 55:46

    Article  Google Scholar 

  80. Zhou S (2014) Effects of discreteness of surface charges on the effective electrostatic interactions. J Chem Phys 140:234704

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank genuinely the anonymous reviewers for the valuable comments which help in improving the work.

Source of funding

This project is supported by the National Natural Science Foundation of China (Grants 21373274 and 21673299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiqi Zhou.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S. Investigation about validity of the Derjaguin approximation for electrostatic interactions for a sphere-sphere system. Colloid Polym Sci 297, 623–631 (2019). https://doi.org/10.1007/s00396-019-04469-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04469-7

Keywords

Navigation