Skip to main content

Advertisement

Log in

Triclosan nanoparticles via emulsion-freeze-drying for enhanced antimicrobial activity

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Low water solubility and poor bioavailability of hydrophobic pharmaceuticals are significant problems in drug formulation. This research presents a bottom-up route to prepare nanoparticles of hydrophobic actives which is synthetically straightforward, robust, and can be applied to a range of active molecules. A series of amphiphilic branched diblock copolymers have been prepared via the conventional radical polymerization of a vinyl monomer (styrene, butylmethacrylate, or N-isopropylacrylamide) and a corresponding divinyl cross-linker facilitated by a poly(ethylene glycol)-based macro-initiator. These materials were employed as stabilizers in the emulsion-freeze-drying methodology to prepare nanoparticles of hydrophobic pharmaceuticals. It is demonstrated that these branched diblock copolymers are able to facilitate the formation of Triclosan nanoparticles which display enhanced antimicrobial activity against Candida albicans, when compared to non-processed (used as received) Triclosan. This process requires significantly lower levels of stabilizer compared to previously reported surfactant/polymer systems after optimization of polymer properties and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Loftssona T, Brewsterb ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62:1607–1621

    Article  Google Scholar 

  2. Lipinski CA, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25

    Article  CAS  Google Scholar 

  3. Kalepu S, Nekkanti V (2015) Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 5:442–453

    Article  Google Scholar 

  4. Hodgson J (2001) ADMET--turning chemicals into drugs. Nature Biotechnol 19:722–726

    Article  CAS  Google Scholar 

  5. Ren W, Cheng W, Wang G, Liu Y (2017) Developments in antimicrobial polymers. J Polym Sci A Polym Chem 55:632–639

    Article  CAS  Google Scholar 

  6. Turos E, Reddy GSK, Greenhalgh K, Ramaraju P, Abeylath SC, Jang S, Dickey S, Lim DV (2007) Penicillin-bound polyacrylate nanoparticles: restoring the activity of β-lactam antibiotics against MRSA. Bioorg Med Chem Lett 17:3468–3472

    Article  CAS  Google Scholar 

  7. Radovic-Moreno AF, Lu TK, Puscasu VA, Yoon CJ, Langer R, Farokhzad OC (2012) Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6:4279–4287

    Article  CAS  Google Scholar 

  8. Pinto-Alphandary H, Andremont A, Couvreur P (2000) Targeted delivery of antibiotics using liposomes and nanoparticles: research and applications. Int J Antimicrob Agents 13:155–168

    Article  CAS  Google Scholar 

  9. Langowska K, Palivan CG, Meier W (2013) Polymer nanoreactors shown to produce and release antibiotics locally. Chem Commun 49:128–130

    Article  CAS  Google Scholar 

  10. Zhang J, Pin Chen Y, Miller KP, Ganewatta MS, Bam M, Yan Y, Nagarkatti M, Decho AW, Tang C (2014) Antimicrobial metallopolymers and their bioconjugates with conventional antibiotics against multidrug-resistant bacteria. J Am Chem Soc 136:4873–4876

    Article  CAS  Google Scholar 

  11. Wais U, Jackson AW, He T, Zhang H (2016). Nano 8:1746–1769

    CAS  Google Scholar 

  12. Tran T-H, Nguyen CT, Gonzalez-Fajardo L, Hargrove D, Song D, Deshmukh P, Mahajan L, Ndaya D, Lai L, Kasi RM, Lu X (2014) Long circulating self-assembled nanoparticles from cholesterol-containing brush-like block copolymers for improved drug delivery to tumors. Biomacromolecules 15:4363–4375

    Article  CAS  Google Scholar 

  13. Williams DF (1982) Biodegradation of surgical polymers. J Mater Sci 17:1233–1246

    Article  CAS  Google Scholar 

  14. Lee ALZ, Venkataraman S, Sirat SBM, Gao S, Hedrick JL, Yang YY (2012) The use of cholesterol-containing biodegradable block copolymers to exploit hydrophobic interactions for the delivery of anticancer drugs. Biomaterials 33:1921–1928

    Article  CAS  Google Scholar 

  15. Yu Y, He Y, Xu B, He Z, Zhang Y, Chen Y, Yang Y, Xie Y, Zheng Y, He G, He J, Song X (2013) Self-assembled methoxy poly(ethylene glycol)-cholesterol micelles for hydrophobic drug delivery. J Pharm Sci 102:1054–1062

    Article  CAS  Google Scholar 

  16. Scherphof GL, Dijkstra JAN, Spanjer HH, Derksen JTP, Roerdink FH (1985) Uptake and intracellular processing of targeted and nontargeted liposomes by rat Kupffer cells in vivo and in vitro. Ann N Y Acad Sci 446:368–384

    Article  CAS  Google Scholar 

  17. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066:29–36

    Article  CAS  Google Scholar 

  18. McDonald TO, Tatham LM, Southworth FY, Giardiello M, Martin P, Liptrott NJ, Owen A, Rannard SP (2013) High-throughput nanoprecipitation of the organic antimicrobial triclosan and enhancement of activity against Escherichia coli. J Mater Chem B 1:4455–4465

    Article  CAS  Google Scholar 

  19. Maa Y-F, Nguyen P-A, Sweeney T, Shire SJ, Hsu CC (1999) Protein inhalation powders: spray drying vs spray freeze drying. Pharm Res 16:249–254

    Article  CAS  Google Scholar 

  20. Chawla A, Taylor KMG, Newton JM, Johnson MCR (1994) Production of spray dried salbutamol sulphate for use in dry powder aerosol formulation. Int J Pharm 108:233–240

    Article  CAS  Google Scholar 

  21. Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 63:427–440

    Article  CAS  Google Scholar 

  22. Brough C, Williams Iii RO (2013) Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int J Pharm 453:157–166

    Article  CAS  Google Scholar 

  23. Sinha B, Müller RH, Möschwitzer JP (2013) Bottom-up approaches for preparing drug nanocrystals: formulations and factors affecting particle size. Int J Pharm 453:126–141

    Article  CAS  Google Scholar 

  24. Chan H-K, Kwok PCL (2011) Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 63:406–416

    Article  CAS  Google Scholar 

  25. Sultana N, Wang M (2008) Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J Mater Sci Mater Med 19:2555–2561

    Article  CAS  Google Scholar 

  26. Sultana N, Wang M (2012). Biofabrication 4:1–14

    Article  Google Scholar 

  27. Wanga T, Wang N, Wang T, Sun W, Li T (2011) Preparation of submicron liposomes exhibiting efficient entrapment of drugs by freeze-drying water-in-oil emulsions. Chem Phys Lipids 164:151–157

    Article  Google Scholar 

  28. Wang T, Deng Y, Geng Y, Gao Z, Zou J, Wang Z (2006) Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochim Biophys Acta 1758:222–231

    Article  CAS  Google Scholar 

  29. Grant N, Zhang H (2011) Poorly water-soluble drug nanoparticles via an emulsion-freeze-drying approach. J Colloid Interface Sci 356:573–578

    Article  CAS  Google Scholar 

  30. Zhang H, Wang D, Butler R, Campbell NL, Long J, Tan B, Duncalf DJ, Foster AJ, Hopkinson A, Taylor D, Angus D, Cooper AI, Rannard SP (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3:506–511

    Article  CAS  Google Scholar 

  31. Wais U, Jackson AW, Zuo Y, Xiang Y, He T, Zhang H (2016) Drug nanoparticles by emulsion-freeze-drying via the employment of branched block copolymer nanoparticles. J Control Release 222:141–150

    Article  CAS  Google Scholar 

  32. Martins N, Ferreira ICFR, Barros L, Silva S, Henriques M (2014) Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177:223–240

    Article  CAS  Google Scholar 

  33. Erdogan A, Rao SSC (2015). Curr Gastroenterol Rep 17:1–7

    Article  Google Scholar 

  34. Teagarden DL, Baker DS (2002) Practical aspects of lyophilization using non-aqueous co-solvent systems. Eur J Pharm Sci 15:115–133

    Article  CAS  Google Scholar 

  35. ICH, ICH harmonised tripartite guideline-impurities: guideline for residual solvents Q3C (R5)

  36. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticleâcell interactions. Small 6:12–21

    Article  CAS  Google Scholar 

  37. Pfaller MA, Diekema DJ (2007) Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem. Clin Microbiol Rev 20:133–163

    Article  CAS  Google Scholar 

  38. R. Singh and A. Chakrabarti, In: C. albicans: Cellular and molecular biology, ed. R. Prasad, Springer International Publishing, Switzerland, 2017 3, pp 25–40

  39. Loftsson T, Leeves N, Bjornsdottir B, Duffy L, Masson M (1999) Effect of cyclodextrins and polymers on triclosan availability and substantivity in toothpastes in vivo. J Pharm Sci 88:1254–1258

    Article  CAS  Google Scholar 

  40. Noyes AA, Whitney WR (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934

    Article  Google Scholar 

  41. Maleki Dizaj S, Vazifehasl Z, Salatin S, Adibkia K, Javadzadeh Y (2015). Res Pharm Sci 10:95–108

    Google Scholar 

  42. Heng D, Cutler DJ, Chan HK, Raper JA (2008) What is a suitable dissolution method for drug nanoparticles? Pharm Res 25:1696–1701

    Article  CAS  Google Scholar 

  43. Prabhu S, Poulose EK (2012). Int Nano Lett 2:32–41

    Article  Google Scholar 

  44. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    Article  CAS  Google Scholar 

  45. Barbosa TM, Levy SB (2000) The impact of antibiotic use on resistance development and persistence. Drug Resist Updat 3:303–311

    Article  Google Scholar 

  46. Dann AB, Hontela A (2011) Triclosan: environmental exposure, toxicity and mechanisms of action. J Appl Toxicol 31:285–311

    Article  CAS  Google Scholar 

  47. Jamil B, Imran M (2018) Factors pivotal for designing of nanoantimicrobials: an exposition. Crit Rev Micobiol 44:79–94

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ulrike Wais acknowledges the joint PhD studentship between the University of Liverpool and the A*Star Research Attachment Program (ARAP) scholarship. The authors would like to thank Wendy Rusli (of A* Star, Institute of Chemical and Engineering Sciences) for performing cryo-TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander W. Jackson or Haifei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

1H NMR spectra, and additional optical microscopy and SEM image (DOCX 1640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wais, U., Nawrath, M.M., Jackson, A.W. et al. Triclosan nanoparticles via emulsion-freeze-drying for enhanced antimicrobial activity. Colloid Polym Sci 296, 951–960 (2018). https://doi.org/10.1007/s00396-018-4312-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4312-0

Keywords

Navigation