Skip to main content
Log in

Simple-liquid dynamics emerging in the mechanical shear spectra of poly(propylene glycol)

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The present dielectric investigations of methyl-terminated poly(propylene glycol) (PPG) oligomers reveal that near the glass transition the normal modes and segmental relaxation merge in a single-process susceptibility spectrum, similar to previous observations on OH-terminated species. Moreover, the present shear-mechanical measurements demonstrate that the vanishing of chain modes can be monitored without recourse to dielectric investigations, which are able to access chain dynamics only for the relatively small fraction of type A polymers. As the normal and segmental modes merge, the viscosity displays a crossover from a polymer-like regime governed by the chain dynamics, to a simple-liquid regime governed by the structural relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Williams G (2009) Chain dynamics in solid polymers and polymerizing systems as revealed by broadband dielectric spectroscopy. Macromol Symp 286:1–19

    Article  CAS  Google Scholar 

  2. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  3. Rouse Jr PE (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272–1280

    Article  CAS  Google Scholar 

  4. Bahar I, Erman B, Monnerie L (1991) Stochastic treatment of conformational transitions of polymer chains in the sub-Rouse regime. Macromolecules 24:3618–3626

    Article  CAS  Google Scholar 

  5. Paluch M, Pawlus S, Sokolov AP, Ngai KL (2010) Sub-rouse modes in polymers observed by dielectric spectroscopy. Macromolecules 43:3103–3106

    Article  CAS  Google Scholar 

  6. Hintermeyer J, Herrmann A, Kahlau R, Goiceanu C, Rössler EA (2008) Molecular weight dependence of glassy dynamics in linear polymers revisited. Macromolecules 41:9335–9344

    Article  CAS  Google Scholar 

  7. Agapov AL, Sokolov AP (2009) Does the molecular weight dependence of Tg correlate to Me? Macromolecules 42:2877–2878

    Article  CAS  Google Scholar 

  8. Wu X, Liu C, Zhu Z, Ngai KL, Wang L-M (2011) Nature of the sub-rouse modes in the glass−rubber transition zone of amorphous polymers. Macromolecules 44:3605–3610

    Article  CAS  Google Scholar 

  9. Baur ME, Stockmayer H (1965) Dielectric relaxation in liquid polypropylene oxides. J Chem Phys 43:4319–4325

    Article  CAS  Google Scholar 

  10. Adachi K, Kotaka T (1993) Dielectric normal-mode relaxation. Prog Polym Sci 18:585–622

    Article  CAS  Google Scholar 

  11. Schönhals A, Schlosser E (1993) Relationship between segmental and chain dynamics in polymer melts as studied by dielectric spectroscopy. Physica Scripta T49:233–236

    Article  Google Scholar 

  12. Schönhals A, Schlosser E (1993). Relation between main- and normal-mode relaxation. A dielectric study on poly (propyleneoxide). Prog Coll Polym Sci 91:158–161

  13. Mierzwa M, Floudas G, Dorgan J, Knauss D, Wegner J (2002) Local and global dynamics of polylactides: a dielectric spectroscopy study. J Non-Cryst Solids 307-310:296–303

    Article  CAS  Google Scholar 

  14. Nicolai T, Floudas G (1998) Dynamics of linear and star poly(oxypropylene) studied by dielectric spectroscopy and rheology. Macromolecules 31:2578–2585

    Article  CAS  Google Scholar 

  15. Casalini R, Roland CM (2005) Temperature and density effects on the local segmental and global chain dynamics of poly(oxybutylene). Macromolecules 38:1779–1788

    Article  CAS  Google Scholar 

  16. Ngai KL, Schönhals A, Schlosser E (1992) An explanation of anomalous dielectric relaxation properties of polypropylene glycol. Macromolecules 25:4915–4919

    Article  CAS  Google Scholar 

  17. Ilan B, Loring RF (1999) Local vitrification model for melt dynamics. Macromolecules 32:949–951

    Article  CAS  Google Scholar 

  18. Plazek DJ, O’Rourke VMJ (1971). Viscoelastic behavior of low molecular weight polystyrene. Polym. Sci., Part A2 9:209–243

  19. Plazek DJ, Schlosser E, Schönhals A, Ngai KL (1993) Breakdown of the rouse model for polymers near the glass transition temperature. J Chem Phys 98:6488–6491

    Article  CAS  Google Scholar 

  20. Ngai KL, Plazek DJ (1995) Identification of different modes of molecular motion in polymers that cause thermorheological complexity. Rubber Chem Technol 68:376–434

    Article  CAS  Google Scholar 

  21. Plazek DJ (1996) Bingham medal address: oh, thermorheological simplicity, wherefore art thou? J Rheol 40:987–1014

    Article  CAS  Google Scholar 

  22. Beevers MS, Elliott DA, Williams G (1980) Dynamic Kerr-effect and dielectric relaxation studies of a poly(methylphenyl siloxane). Polymer 21:13–20

    Article  CAS  Google Scholar 

  23. Hayakawa T, Adachi K (2001) Dielectric normal mode relaxation of undiluted poly(propylene glycol)s. Polymer 42:1725–1732

    Article  CAS  Google Scholar 

  24. Engberg D, Schüller J, Strube B, Sokolov AP, Torell LM (1999) Brillouin scattering and dielectric relaxation in PPG of different chain lengths and end groups. Polymer 40:4755–4761

    Article  CAS  Google Scholar 

  25. Mattsson J, Bergman R, Jacobsson P, Börjesson L (2003) Chain-length-dependent relaxation scenarios in an oligomeric glass-forming system: from merged to well-separated α and β loss peaks. Phys Rev Lett 90:075702

    Article  CAS  Google Scholar 

  26. Mattsson J, Bergman R, Jacobsson P, Börjesson L (2005) Influence of chain length on the α−β bifurcation in oligomeric glass formers. Phys Rev Lett 94:165701

    Article  CAS  Google Scholar 

  27. Swenson J, Köper I, Telling MTF (2002) Dynamics of propylene glycol and its 7-mer by neutron scattering. J Chem Phys 116:5073–5079

    Article  CAS  Google Scholar 

  28. Vogel M, Torbrügge T (2007) Nonexponential polymer segmental motion in the presence and absence of ions: 2H NMR multitime correlation functions for polymer electrolytes poly(propylene glycol)-LiClO4. J Chem Phys 126:204902

    Article  CAS  Google Scholar 

  29. Cochrane J, Harrison G, Lamb J, Phillips DW (1980) Creep, creep recovery and dynamic mechanical measurements of a poly(propylene glycol) oligomer. Polymer 21:837–844

    Article  CAS  Google Scholar 

  30. Saba RG, Sauer JA, Woodward AE (1963) Dynamic shear behavior of poly(γ-benzyl L-glutamate), poly(D,L-propylene oxide), and poly(ethyl vinyl ether). J Polymer Sci Part A 1:1483–1490

    Google Scholar 

  31. Christensen T, Olsen NB (1995) A rheometer for the measurement of a high shear modulus covering more than seven decades of frequency below 50 kHz. Rev Sci Instrum 66:5019–5031

    Article  CAS  Google Scholar 

  32. Xing K, Chatterjee S, Saito T, Gainaru C, Sokolov AP (2016) Impact of hydrogen bonding on dynamics of hydroxyl-terminated Polydimethylsiloxane. Macromolecules 49:3138–3147

    Article  CAS  Google Scholar 

  33. PPG with this molecular weight were dielectrically studied before, see Park IS, Saruta K, Koijma S (1998) Dielectric Relaxation and Calorimetric Measurements of Glass Transition in the Glass-Forming Dyhydroxyl Alcohols. J Phys Soc Jpn 67:4131–4138

    Article  CAS  Google Scholar 

  34. Gainaru C, Böhmer R (2009) Oligomer-to-polymer transition of poly-(propylene glycol) revealed by dielectric normal modes. Macromolecules 42:7616–7618

    Article  CAS  Google Scholar 

  35. Ferry JD (1970) Viscoelastic properties of polymers. Wiley, New York,

    Google Scholar 

  36. Ngai KL, Rendell RW, Rajagopal AK, Teitler S (1986) Three coupled relations for relaxations in complex systems. Ann N Y Acad Sci 484:150–180

    Article  CAS  Google Scholar 

  37. Gainaru C, Hiller W, Böhmer R, Dielectric Study A (2010) Of Oligo- and poly(propylene glycol). Macromolecules 43:1907–1914

    Article  CAS  Google Scholar 

  38. Reinsberg SA, Heuer A, Doliwa B, Zimmermann H, Spiess HW (2002) Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. J Non-Cryst Solids 307-310:208–214

    Article  CAS  Google Scholar 

  39. Fragiadakis D, Casalini R, Bogoslovov RB, Robertson CG, Roland CM (2011) Dynamic heterogeneity and density scaling in 1,4-Polyisoprene. Macromolecules 44:1149–1155

    Article  CAS  Google Scholar 

  40. Strobl G (1997) The physics of polymers. Springer, Berlin

    Book  Google Scholar 

Download references

Acknowledgements

Support by the Deutsche Forschungsgemeinschaft (Grant BO1301/14-1) is gratefully acknowledged. This work was partially supported by the VILLUM Foundation. The US team thanks the NSF Polymer program for financial support (DMR-1408811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalin Gainaru.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainaru, C., Hecksher, T., Fan, F. et al. Simple-liquid dynamics emerging in the mechanical shear spectra of poly(propylene glycol). Colloid Polym Sci 295, 2433–2437 (2017). https://doi.org/10.1007/s00396-017-4206-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4206-6

Keywords

Navigation