Skip to main content
Log in

Assessment of synergistic interactions on self-assembled sodium alginate/nano-hydroxyapatite composites: to the conception of new bone tissue dressings

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aim of this work is to assess the behavior of biocomposites (CPSs) in regard to the generation of biogenic hydroxyapatite and also their degradation depending on the concentration of cross-linker agent, pH, and ionic strength. The development of these composites with potential application in bone tissue regeneration is based on alginate and synthetic nano-hydroxyapatite (nano-HA), which was used as a cross-linker agent. The CPSs showed the capability to develop biogenic hydroxyapatite when they were incubated in simulated body fluid (SBF) depending on the incubation time and concentration of the linker. These results were analyzed by x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM). Furthermore, the CPSs have shown resistance to the degradation (demonstrated by swelling and dissolution tests) when the mentioned conditions were modified. Finally, the development of a liquid crystalline phase within the composites, which contributes to reinforce their structure, is a novel finding in this study. This behavior has been shown by means of optical microscopy (OM) with crossed polaroids. Thus, these composites displayed promising results to be used as bone filling materials in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dimitriou R, Mataliotakis GI, Angoules AG, et al. (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42:S3–S15. https://doi.org/10.1016/j.injury.2011.06.015

    Article  Google Scholar 

  2. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:S20–S27. https://doi.org/10.1016/j.injury.2005.07.029

    Article  Google Scholar 

  3. D’Elía NL, Mathieu C, Hoemann CD, et al. (2015) Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures. Nano 7:18751–18762. https://doi.org/10.1039/C5NR04850H

    Google Scholar 

  4. Tautzenberger A, Kovtun I (2012) Nanoparticles and their potential for application in bone. Int J Nanomedicine 7:4545–4557. https://doi.org/10.2147/IJN.S34127

    Article  CAS  Google Scholar 

  5. D’Elía NL, Gravina AN, Ruso JM, et al. (2013) Manipulating the bioactivity of hydroxyapatite nano-rods structured networks: effects on mineral coating morphology and growth kinetic. Biochim Biophys Acta - Gen Subj 1830:5014–5026. https://doi.org/10.1016/j.bbagen.2013.07.020

    Article  Google Scholar 

  6. Cai Y, Yu J, Kundu SC, Yao J (2016) Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration. Mater Chem Phys 181:4–10. https://doi.org/10.1016/j.matchemphys.2016.06.053

    Article  Google Scholar 

  7. Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757. https://doi.org/10.1016/j.biomaterials.2003.12.005

    Article  CAS  Google Scholar 

  8. Kokubo T, Hanakawa M, Kawashita M, et al. (2004) Apatite deposition on calcium alginate fibres in simulated body fluid. J Ceram Soc Jpn 112:363–367. https://doi.org/10.2109/jcersj.112.363

    Article  CAS  Google Scholar 

  9. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139. https://doi.org/10.2215/CJN.04151206

    Article  CAS  Google Scholar 

  10. Lin H-R, Yeh Y-J (2004) Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, andin vitro studies. J Biomed Mater Res 71B:52–65. https://doi.org/10.1002/jbm.b.30065

    Article  CAS  Google Scholar 

  11. Ilie A, Ghiţulică C, Andronescu E, et al. (2015) New composite materials based on alginate and hydroxyapatite as potential carriers for ascorbic acid. Int J Pharm 510:501–507. https://doi.org/10.1016/j.ijpharm.2016.01.025

    Article  Google Scholar 

  12. Zhang J, Wang Q, Wang A (2010) In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater 6:445–454. https://doi.org/10.1016/j.actbio.2009.07.001

    Article  CAS  Google Scholar 

  13. Rwei SP, Nguyen TA (2015) Formation of liquid crystals and behavior of LCST upon addition of xanthan gum (XG) to hydroxypropyl cellulose (HPC) solutions. Cellulose 22:53–61. https://doi.org/10.1007/s10570-014-0469-y

    Article  CAS  Google Scholar 

  14. Rwei SP, Nguyen TA, Chien-Jung Lee J, Chiang WY (2015) Liquid crystal formation and rheological study in aqueous blends of xanthan/acacia gum. Food Hydrocoll 46:52–58. https://doi.org/10.1016/j.foodhyd.2014.12.013

    Article  CAS  Google Scholar 

  15. Quirolo ZB, Benedini LA, Sequeira MA, et al. (2014) Understanding recognition and self-assembly in biology using the chemist’s toolbox. Insight into medicinal chemistry. Curr Top Med Chem 14:730–739. https://doi.org/10.2174/1568026614666140118220825

    Article  CAS  Google Scholar 

  16. Melville AJ, Rodríguez-Lorenzo LM, Forsythe JS (2008) Effects of calcination temperature on the drug delivery behaviour of ibuprofen from hydroxyapatite powders. J Mater Sci Mater Med 19:1187–1195. https://doi.org/10.1007/s10856-007-3185-4

    Article  CAS  Google Scholar 

  17. Nayak A, Laha B, Sen K (2011) Development of hydroxyapatite-ciprofloxacin bone-implants using “quality by design”. Acta Pharma 61:25–36. https://doi.org/10.2478/v10007-011-0002-x

    Article  CAS  Google Scholar 

  18. Öztürk E, Agalar C, Keçeci K, Denkbaş EB (2006) Preparation and characterization of ciprofloxacin-loaded alginate/chitosan sponge as a wound dressing material. J Appl Polym Sci 101:1602–1609. https://doi.org/10.1002/app.23563

    Article  Google Scholar 

  19. Dong Z, Wang Q, Du Y (2006) Alginate/gelatin blend films and their properties for drug controlled release. J Memb Sci 280:37–44. https://doi.org/10.1016/j.memsci.2006.01.002

    Article  CAS  Google Scholar 

  20. Islan GA, Mukherjee A, Castro GR (2015) Development of biopolymer nanocomposite for silver nanoparticles and ciprofloxacin controlled release. Int J Biol Macromol 72:740–750. https://doi.org/10.1016/j.ijbiomac.2014.09.020

    Article  CAS  Google Scholar 

  21. Devanand Venkatasubbu G, Ramasamy S, Ramakrishnan V, Kumar J (2011) Hydroxyapatite-alginate nanocomposite as drug delivery matrix for sustained release of ciprofloxacin. J Biomed Nanotechnol 7:759–767. https://doi.org/10.1166/jbn.2011.1350

    Article  Google Scholar 

  22. Salomonsen T, Jensen HM, Larsen FH, et al. (2009) Alginate monomer composition studied by solution- and solid-state NMR—a comparative chemometric study. Food Hydrocoll 23:1579–1586. https://doi.org/10.1016/j.foodhyd.2008.11.009

    Article  CAS  Google Scholar 

  23. Rhim J-W (2004) Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Sci Technol 37:323–330. https://doi.org/10.1016/j.lwt.2003.09.008

    Article  CAS  Google Scholar 

  24. Kokubo T, Hanakawa M, Kawashita M, et al. (2004) Apatite-forming ability of alginate fibers treated with calcium hydroxide solution. J Mater Sci Mater Med 15:1007–1012. https://doi.org/10.1023/B:JMSM.0000042686.44977.81

    Article  CAS  Google Scholar 

  25. Kokubo T, Kushitani H, Sakka S, et al (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J Biomed Mat Res 24:721–734. https://doi.org/10.1002/jbm.820240607

  26. Padmanabhan SK, Balakrishnan A, Chu MC, et al. (2009) Sol-gel synthesis and characterization of hydroxyapatite nanorods. Particuology 7:466–470. https://doi.org/10.1016/j.partic.2009.06.008

    Article  CAS  Google Scholar 

  27. Sangeetha K, Thamizhavel A, Girija EK (2013) Effect of gelatin on the in situ formation of alginate/hydroxyapatite nanocomposite. Mater Lett 91:27–30. https://doi.org/10.1016/j.matlet.2012.09.054

    Article  CAS  Google Scholar 

  28. Xie M, Olderoy M, Andreassen JP, et al. (2010) Alginate-controlled formation of nanoscale calcium carbonate and hydroxyapatite mineral phase within hydrogel networks. Acta Biomater 6:3665–3675. https://doi.org/10.1016/j.actbio.2010.03.034

    Article  CAS  Google Scholar 

  29. Pleshko N, Boskey A, Mendelsohn R (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J 60:786–793. https://doi.org/10.1016/S0006-3495(91)82113-0

    Article  CAS  Google Scholar 

  30. Ruso JM, Verdinelli V, Hassan N, et al. (2013) Enhancing CaP biomimetic growth on TiO 2 cuboids nanoparticles via highly reactive facets. Langmuir 29:2350–2358. https://doi.org/10.1021/la305080x

    Article  CAS  Google Scholar 

  31. Zhang S (2013) Hydroxyapatite coatings for biomedical applications. CRC Press Taylor and Francis Group, London,

    Google Scholar 

  32. Andersen T, Strand BL, Formo K, et al (2012) Alginates as biomaterials in tissue engineering In: Rauter AP (ed). Carbohydrate Chemistry: Chemical and Biological Approaches. The Royal Society of Chemistry 37, Cambridge, pp 227–258

  33. Xu JB, Bartley JP, Johnson RA (2003) Preparation and characterization of alginate hydrogel membranes crosslinked using a water-soluble carbodiimide. J Appl Polym Sci 90:747–753. https://doi.org/10.1002/app.12713

    Article  CAS  Google Scholar 

  34. Topuz F, Henke A, Richtering W, Groll J (2012) Magnesium ions and alginate do form hydrogels: a rheological study. Soft Matter 8:4877–4881. https://doi.org/10.1039/c2sm07465f

    Article  CAS  Google Scholar 

  35. Melvik JE, Dornish M (2004) Fundamentals of cell immobilisation biotechnology. Fundam Cell Immobil Biotechnol. https://doi.org/10.1007/978-94-017-1638-3

  36. Ingar Draget K, Ostgaard K, Smidsrod O (1990) Homogeneous alginate gels: a technical approach. Carbohydr Polym 14:159–178. https://doi.org/10.1016/0144-8617(90)90028-Q

    Article  Google Scholar 

  37. Turco G, Marsich E, Bellomo F, et al (2009) Alginate/hydroxyapatite biocomposite for bone ingrowth: A Trabecular Structure With High And Isotropic Connectivity. Biomacromol 10:1575–1583. https://doi.org/10.1021/bm900154b

  38. Reis CP, Ribeiro AJ, Neufeld RJ, V F (2006) Alginate microparticles as novel carrier for oral insulin delivery. Biotechnol Bioeng 96:977–989

    Article  Google Scholar 

  39. Benavides S, Villalobos-Carvajal R, Reyes JE (2012) Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. J Food Eng 110:232–239. https://doi.org/10.1016/j.jfoodeng.2011.05.023

    Article  CAS  Google Scholar 

  40. Haug AL, Larsen BS (1963) The degradation of alginates at different pH values. Acta Chem Scand 17(5):1466–1468. https://doi.org/10.3891/acta.chem.scand.17-1466

  41. Williams PA, Phillips GO (2004) Gums and stabilisers for the food industry 12. The royal society of chemistry, thomas graham house, science park, milton road, Cambridge. https://doi.org/10.1039/9781847551214

  42. Nakamura K, Hatakeyama T, Hatakeyama H (1991) Formation of the glassy state and mesophase in the water–sodium alginate system. Polym J 23:253–258. https://doi.org/10.1295/polymj.23.253

    Article  CAS  Google Scholar 

  43. Ureña-Benavides EE, Ao G, Davis VA, Kitchens CL (2011) Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions. Macromolecules 44:8990–8998. https://doi.org/10.1021/ma201649f

    Article  Google Scholar 

  44. Ureña-Benavides EE, Brown PJ, Kitchens CL (2010) Effect of jet stretch and particle load on cellulose nanocrystal-alginate nanocomposite fibers. Langmuir 26:14263–14270. https://doi.org/10.1021/la102216v

    Article  Google Scholar 

  45. Desplanques S, Grisel M, Malhiac C, Renou F (2014) Stabilizing effect of acacia gum on the xanthan helical conformation in aqueous solution. Food Hydrocoll 35:181–188. https://doi.org/10.1016/j.foodhyd.2013.05.009

    Article  CAS  Google Scholar 

  46. Lee KY, M DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003.Alginate

    Article  CAS  Google Scholar 

  47. Grant GT, Morris ER, Rees DA, et al. (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198. https://doi.org/10.1016/0014-5793(73)80770-7

    Article  CAS  Google Scholar 

  48. Wolnik A, Albertin L, Charlier L, Mazeau K (2013) Probing the helical forms of Ca2+-guluronan junction zones in alginate gels by molecular dynamics 1: duplexes. Biopolymers 99:562–571. https://doi.org/10.1002/bip.22216

    Article  CAS  Google Scholar 

  49. Sugawara E, Nikaido H (2009) Alginates: biology and applications. Antimicrob Agents Chemother. https://doi.org/10.1007/978-3-540-92679-5

  50. Zhang C, Li C, Huang S, et al. (2010) Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31:3374–3383. https://doi.org/10.1016/j.biomaterials.2010.01.044

    Article  CAS  Google Scholar 

  51. Venkatesan J, Nithya R, Sudha PN, Kim S-K (2014) Chapter four—role of alginate in bone tissue engineering. Adv Food Nutr Res 73. https://doi.org/10.1016/B978-0-12-800268-1.00004-4

  52. Benedini L, Messina PV, Palma SD, et al. (2012) The ascorbyl palmitate-polyethyleneglycol 400-water system phase behavior. Colloids Surf B Biointerfaces 89:265–270. https://doi.org/10.1016/j.colsurfb.2011.09.030

    Article  CAS  Google Scholar 

  53. Ullio Gamboa GV, Benedini LA, Schulz PC, Allemandi DA (2016) Phase behavior of ascorbyl palmitate coagels loaded with oligonucleotides as a new carrier for vaccine adjuvants. J Surfactant Deterg 19:747–757. https://doi.org/10.1007/s11743-016-1816-9

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the support from Universidad Nacional del Sur (PGI 24/Q064) and Concejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET, PIP 11220130100100CO). Paula Messina and Luciano Benedini are researchers of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Benedini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 1362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedini, L., Placente, D., Pieroni, O. et al. Assessment of synergistic interactions on self-assembled sodium alginate/nano-hydroxyapatite composites: to the conception of new bone tissue dressings. Colloid Polym Sci 295, 2109–2121 (2017). https://doi.org/10.1007/s00396-017-4190-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4190-x

Keywords

Navigation